精英家教网 > 高中数学 > 题目详情
1.设地球半径为R,在纬度为α弧度的纬线圈上有A,B两地,若这两地的纬线圈上的弧长为πRcosα,则A,B两地之间的球面距离为(π-2α)R.

分析 求出纬度为α弧度的纬度圈半径,结合这两地的纬线圈上的弧长,求出纬度圈上AB两点对应的圆心角,进而可求出过A、B两点的大圆被A、B截下的劣弧长度,即可求出球面距离

解答 解:纬度为α弧度的纬度圈上两点A、B,设纬度圈半径为r,
∴r=R•cosα.
又∵这两地的纬线圈上的弧长为πRcosα,
∴∠AOB=π.
过A、B两点的大圆被A、B截下的劣弧占总周长的(π-2α)R,
∴A、B两点间的球面距离为(π-2α)R.
故答案为:(π-2α)R.

点评 本题考查球的有关经纬度知识,球面距离,弧长公式,考查空间想象能力,逻辑思维能力,是基础题,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知在四边形ABCD中,AD∥BC,AD=AB=a,∠BCD=45°,∠BAD=90°,将△ABD沿对角线BD折起,折起后点A的位置为P,且使平面PBD⊥平面BCD.
(1)在折叠前的四边形ABCD中,作AE⊥BD于E,过点E作EF⊥BC点F,求在折起后的图形中∠PEF的正切值.
(2)求BC与平面PDC所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数既是奇函数又是(0,1)上的增函数的是(  )
A.y=-xB.y=x2C.y=sinxD.y=cosx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线2x+4y-3=0的斜率为(  )
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}和{bn}满足:a1=$\frac{2}{3},3{a_{n+1}}=2{a_n}$(n∈N*),b1+$\frac{b_2}{2}+\frac{b_3}{3}+…+\frac{b_n}{n}={a_{n+1}}-\frac{2}{3}$(n∈N*
(1)求数列{an}和{bn}的通项公式;
(2)当n∈N*时,不等式b1+b2+b3+…+bn+λbn+1+2≤0恒成立,试求常数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数$f(x)={x^3}-b{x^2}+\frac{1}{2}$有且仅有两个不同零点,则b的值为(  )
A.2B.$\frac{3}{2}$C.$\frac{\root{3}{2}}{2}$D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=$\frac{sinx}{sinx+cosx}$在区间[0,$\frac{π}{2}$]上的最大值与最小值分别是 (  )
A.1,0B.$\frac{1}{2}$,0C.0,-1D.1,$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=sinxcos(x-$\frac{π}{3}$).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c.若f(A)=$\frac{2+\sqrt{3}}{4}$,B=$\frac{π}{3}$,c=2,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式|2-3x|>4的解集用区间表示为(-$∞,-\frac{2}{3}$)∪(2,+∞).

查看答案和解析>>

同步练习册答案