精英家教网 > 高中数学 > 题目详情
19.函数$y=2sin(2ωx-\frac{π}{3})$周期是π,则ω2等于(  )
A.1B.$\frac{1}{2}$C.4D.2

分析 利用函数y=Asin(ωx+φ)的周期为 $\frac{2π}{ω}$,得出结论.

解答 解:∵函数$y=2sin(2ωx-\frac{π}{3})$周期是$\frac{2π}{2ω}$=π,∴ω=1,则ω2=1,
故选:A.

点评 本题主要考查函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为 $\frac{2π}{ω}$,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.把-1125°表示为2kπ+α(k∈Z,0≤α<2π)的形式是-8π+$\frac{7π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.三棱锥A-BCD中,△BCD是边长为1的正三角形,点A在平面BCD上的射影为△BCD的中心,E,F分别是BC,BA的中点,EF⊥FD,则三棱锥A-BCD的体积为$\frac{\sqrt{2}}{24}$,直线AB与平面BCD所成角的正弦值为$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=sin2x-$\sqrt{3}$sinxcosx-$\frac{1}{2}$.
(1)求函数f(x)在[0,$\frac{3π}{2}$]上的单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,A为锐角,若$f(A)+sin(2A-\frac{π}{6})=\frac{1}{2}$,b+c=7,△ABC的面积为$2\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知$\overrightarrow m=(2cosx,1)$,$\overrightarrow n=(cosx,sin2x+a)$,$f(x)=\overrightarrow m•\overrightarrow n$.
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)当$x∈[0,\frac{3π}{8}]$时,f(x)的最大值为$\sqrt{2}$,且在此范围内,关于x的方程f(x)=k恰有2个解,确定a的值,并求k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知A(1,2),$\overrightarrow{AC}$=(2,-1),则点C的坐标为(3,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知四棱锥P-ABCD,底面ABCD为边长为2对的菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(1)判定AE与PD是否垂直,并说明理由;
(2)若PA=2,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个几何体的三视图及相关尺寸如图所示,其中其主视图和侧视图是一等腰梯形与一个矩形组成的图形,俯视图是两个同心圆组成的图形,则该几何体的体积为(  )
A.25πB.19πC.11πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在等比数列{an}中,a4=2,a5=5,则lga1+lga2+…+lga8等于4.

查看答案和解析>>

同步练习册答案