精英家教网 > 高中数学 > 题目详情
3.已知x2+$\sqrt{2}$y=$\sqrt{3}$,y2+$\sqrt{2}$x=$\sqrt{3}$且x≠y,求$\frac{y}{x}$+$\frac{x}{y}$的值.

分析 x2+$\sqrt{2}$y=$\sqrt{3}$,y2+$\sqrt{2}$x=$\sqrt{3}$,且x≠y,可得(x2-y2)+$\sqrt{2}(y-x)$=0,x+y=$\sqrt{2}$.把y=$\sqrt{2}$-x代入x2+$\sqrt{2}$y=$\sqrt{3}$,可得${x}^{2}-\sqrt{2}x$+2-$\sqrt{3}$=0.
同理可得:${y}^{2}-\sqrt{2}y+\sqrt{3}$=0,于是xy=$\sqrt{3}$.代入$\frac{y}{x}$+$\frac{x}{y}$=$\frac{{y}^{2}+{x}^{2}}{xy}$=$\frac{(x+y)^{2}-2xy}{xy}$即可得出.

解答 解:∵x2+$\sqrt{2}$y=$\sqrt{3}$,y2+$\sqrt{2}$x=$\sqrt{3}$,且x≠y,
∴(x2-y2)+$\sqrt{2}(y-x)$=0,
∵x≠y,
∴x+y=$\sqrt{2}$.
把y=$\sqrt{2}$-x代入x2+$\sqrt{2}$y=$\sqrt{3}$,
可得${x}^{2}-\sqrt{2}x$+2-$\sqrt{3}$=0.
同理可得:${y}^{2}-\sqrt{2}y+\sqrt{3}$=0,
∵x≠y,
∴xy=$\sqrt{3}$.
∴$\frac{y}{x}$+$\frac{x}{y}$=$\frac{{y}^{2}+{x}^{2}}{xy}$=$\frac{(x+y)^{2}-2xy}{xy}$=$\frac{2-2\sqrt{3}}{\sqrt{3}}$=$\frac{2\sqrt{3}-6}{3}$.

点评 本题考查了一元二次方程的根与系数的关系、代数式的化简、乘法公式,考查了变形能力,计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.求下列极限.
(1)$\underset{lim}{x→2}$$\frac{{x}^{2}+5}{x-3}$;
(2)$\underset{lim}{x→1}$$\frac{{x}^{2}-2x+1}{{x}^{2}-1}$;
(3)$\underset{lim}{x→∞}$(1+$\frac{1}{x}$)(2-$\frac{1}{{x}^{2}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设不等式|x-3|-|x+4|≥-5的解集为A.
(1)求集合A;
(2)若a,b∈(0,+∞),证明:当t∈A时,3a+b≥t(a+$\sqrt{ab}$)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.求函数y=x-1+$\sqrt{{x}^{2}+2x+3}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若log(a+3)$\frac{2}{3}$<1,则a的取值范围是(-3,-$\frac{7}{3}$)∪(-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列各图中表示的由A到B的对应能构成映射的个数是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点M(-2,$\sqrt{2}$),且离心率等于$\frac{\sqrt{2}}{2}$.
(1)求椭圆的方程;
(2)若直线l:y=x+m与椭圆交于A,B两点,与圆x2+y2=2交于C,D两点,当|AB|=2$\sqrt{2}$|CD|时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.下列函数:①f(x)=2x-1;②f(x)=lnx+2x-6;③f(x)=x2+2x+1;④f(x)=${(\frac{1}{2})}^{x}$-1;⑤f(x)=x3+2.不能用二分法求零点的是③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.△ABC中,D为BC的中点,E为AC边上靠近点A的一个三等分点,AD与BE交于点F,求:
(1)AF与FD的长度之比;
(2)BF与FE的长度之比.

查看答案和解析>>

同步练习册答案