已知数列{an}为等差数列,a1=2,且该数列的前10项和为65,若正数列{bn}满足条件.
(1)求数列{bn}的通项公式;
(2)求数列{bn}的最大项;
(3)令,判断在数列{cn}中是否存在某连续的三项或三项以上的项,按原来的排列顺序得到的数列是等比数列?为什么?
科目:高中数学 来源: 题型:
a | an+1 n |
A、6026 | B、6024 |
C、2 | D、4 |
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
1 |
2 |
A、-
| ||
B、
| ||
C、1 | ||
D、2008 |
查看答案和解析>>
科目:高中数学 来源:2012--2013学年河南省高二上学期第一次考试数学试卷(解析版) 题型:选择题
.定义:在数列{an}中,an>0且an≠1,若为定值,则称数列{an}为“等幂数列”.已知数列{an}为“等幂数列”,且a1=2,a2=4,Sn为数列{an}的前n项和,则S2009= ( )A.6026 B .6024 C.2 D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com