精英家教网 > 高中数学 > 题目详情
在△ABC中,若tanA与tanB是方程x2-6x+7=0的两个根,求tanC的值.
考点:两角和与差的正切函数,函数的零点与方程根的关系
专题:三角函数的求值
分析:先由根系关系得出tanA与tanB和与积,由正切的和角公式代入即可求值.
解答: 解:由所给条件,方程x2-6x+7=0的两根,
∴可解得:tanA=3+
2
,tanB=3-
2
.(2分)
∴tanC=-tan(A+B)=-
tanA+tanB
1-tanAtanB
=1(4分)
点评:本题主要考查了一元二次方程的根的分布与同角三角函数的关系以及两角和的正切公式,属于基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设点(a,b)是区域
x+y-4≤0
x>0
y>0
内的随机点,函数y=ax2-4bx+1在区间[1,+∞)上是增函数的概率为(  )
A、
1
3
B、
2
3
C、
1
4
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=an-2+1(a>0且a≠1)的图象经过点P(m,n),且过点Q(m-1,n)的直线 l被圆C:x2+y2+2x-2y-7=0截得的弦长为3
2
,则直线l的斜率为(  )
A、-1或者-7
B、-7或
4
3
C、0或
4
3
D、0或-1

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:cos2θ+cos2(θ+
π
3
)-cosθ•cos(θ+
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=
1
i(i+1)
,则z在复平面内对应的点位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

春节后购物旺季随之转向淡季,商家均用各种方法促销,某商场规定:凡购物均可获得一次抽奖机会,抽奖方法为:编号1~10的相同小球中任意有放回地抽一个小球,若抽到编号为6或8的小球则再获一次机会,最多抽取三次.
(1)求顾客恰有两次抽奖机会的概率;
(2)规定:一等奖为号码含3个6,奖金5000元;二等奖为号码含2个6,奖金1000元,顾客抽得号码只能兑最高奖一次,求顾客购物一次获奖金额的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=
1
2
,则log5(sinα+2cosα)-log5(3sinα-cosα)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设A={x|x2-4x-5=0},B={x|x2=1},求A∪B,A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax
1+x2
+1(a≠0).
(1)当a=1时,求函数f(x)图象在点(0,1)处的切线方程;
(2)求函数f(x)的单调区间;
(3)若a>0,g(x)=x2emx,且对任意的x1,x2∈[0,2],f(x1)≥g(x2)恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案