精英家教网 > 高中数学 > 题目详情
已知抛物线的方程为,直线l过定点,斜率为k.当k为何值时,直线l与该抛物线:只有一个公共点;有两个公共点;没有公共点?
,此时直线l与该抛物线只有一个公共点;当,此时直线l与该抛物线有两个公共点;当,此时直线l与该抛物线没有公共点.

试题分析:解题思路:联立直线方程与抛物线方程,得到关于的一元二次方程,利用判别式的符号判定直线与抛物线的交点个数.规律总结:解决直线与圆锥曲线的交点个数,一般思路是联立直线与圆锥曲线的方程,整理得到关于的一元二次方程,利用判别式的符号进行判定.注意点:当整理得到的一元二次方程的二次项系数为字母时,要注意讨论二次项系数是否为0.
试题解析:直线l的方程为
联立方程组
①当时,知方程有一个解,直线l与该抛物线只有一个公共点.
②当时,方程的判别式为
,则,此时直线l与该抛物线只有一个公共点.
,则,此时直线l与该抛物线有两个公共点.
,则,此时直线l与该抛物线没有公共点.
综上:当,此时直线l与该抛物线只有一个公共点;
,此时直线l与该抛物线有两个公共点;
,此时直线l与该抛物线没有公共点.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)上任意一点P,作与实轴平行的直线,交两渐近线于M、N两点,若
PM
PN
=2b2
,则该双曲线的离心率为(  )
A.
6
3
B.
3
C.
6
2
D.
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线与椭圆
x2
25
+
y2
9
=1
的焦点相同,且它们的离心率之和等于
14
5

(1)求双曲线的离心率的值;
(2)求双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线
y2
25
-
x2
9
=1
,F1、F2为焦点.
(Ⅰ)若P为双曲线
y2
25
-
x2
9
=1
上一点,且∠F1PF2=60°,求△F1PF2的面积;
(Ⅱ)若双曲线C与双曲线
y2
25
-
x2
9
=1
有相同的渐近线,且过点M(-3
3
,5)
,求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

斜率为2的直线L经过抛物线的焦点F,且交抛物线与A、B两点,若AB的中点到抛物线准线的距离1,则P的值为(  ).
A.1           B.           C.          D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线C: y2 =2px(p>0)的准线L,过M(l,0)且斜率为的直线与L相交于A,与C的一个交点为B,若,则p=____      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个动圆与定圆相外切,且与定直线相切,则此动圆的圆心的轨迹方程是(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点P到直线x=-1的距离比它到点(2,0)的距离小1,则点P的轨迹为(  )
A.圆B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

[2014·蚌埠模拟]已知M(-2,0),N(2,0),|PM|-|PN|=4,则动点P的轨迹是(  )
A.双曲线B.双曲线左边一支
C.一条射线 D.双曲线右边一支

查看答案和解析>>

同步练习册答案