【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,点E,F分别是BC,PC的中点,用向量方法解决以下问题:
(1)求异面直线AE与PD所成角的大小;
(2)若AB=AP,求二面角E﹣AF﹣C的余弦值的大小.
【答案】(1)(2)
【解析】
(1)推导出,,,从而平面,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角的大小.
(2) 求出平面的法向量和平面的法向量,利用向量法能求出二面角的余弦值的大小.
(1)由四边形为菱形,,
可得为正三角形.因为为的中点,所以.
又,因此.
以为原点,为轴,为轴,为轴,建立空间直角坐标系,如图:
设,,则,0,,,0,,,0,,,2,.
,0,,,2,,
,
异面直线与所成角的大小为.
(2),
设,则,
,0,,,0,,,1,,,0,,,,.
,0,,,,,,,
设平面的法向量,,,
则,取,得,2,,
设平面的法向量,,,
则,取,得,,,
设二面角的平面角为,
则,
二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图已知椭圆,是长轴的一个端点,弦过椭圆的中心,且,.
(Ⅰ)求椭圆的方程:
(Ⅱ)设为椭圆上异于且不重合的两点,且的平分线总是垂直于轴,是否存在实数,使得,若存在,请求出的最大值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直线不与坐标轴垂直,且与抛物线有且只有一个公共点.
(1)当点的坐标为时,求直线的方程;
(2)设直线与轴的交点为,过点且与直线垂直的直线交抛物线于,两点.当时,求点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,,底面四边形为直角梯形,,,为线段上一点.
(1)若,则在线段上是否存在点,使得平面?若存在,请确定点的位置;若不存在,请说明理由
(2)己知,若异面直线与成角,二而角的余弦值为,求的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】利用一半径为4cm的圆形纸片(圆心为O)制作一个正四棱锥.方法如下:
(1)以O为圆心制作一个小的圆;
(2)在小的圆内制作一内接正方形ABCD;
(3)以正方形ABCD的各边向外作等腰三角形,使等腰三角形的顶点落在大圆上(如图);
(4)将正方形ABCD作为正四棱锥的底,四个等腰三角形作为正四棱锥的侧面折起,使四个等腰三角形的顶点重合,问:要使所制作的正四棱锥体积最大,则小圆的半径为
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥中,是边长为的正三角形,点为正方形的中心,为线段的中点,.则下列结论正确的是( )
A.平面平面
B.直线与是异面直线
C.线段与的长度相等
D.直线与平面所成的角的余弦值为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知且,设命题函数在R上单调递减,命题对任意实数x,不等式恒成立.
(1)求非q为真时,实数c的取值范围;
(2)如果命题为真命题,且为假命题,求实数c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足a3=5,a4﹣2a2=3,又等比数列{bn}中,b1=3且公比q=3.
(1)求数列{an},{bn}的通项公式;
(2)若cn=an+bn,求数列{cn}的前n项和Sn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com