精英家教网 > 高中数学 > 题目详情

【题目】已知函数在区间上的最大值为,最小值为,记

1)求实数的值;

2)若不等式对任意恒成立,求实数的范围;

3)对于定义在上的函数,设,用任意划分成个小区间,其中,若存在一个常数,使得不等式恒成立,则称函数为在上的有界变差函数,试证明函数是在上的有界变差函数,并求出的最小值;

【答案】1;(2;(3)证明见解析,

【解析】

1)由已知在区间上的最大值为4,最小值为1,结合函数的单调性及最值,易构造关于的方程组,解得的值。

(2)求出对任意恒成立等价于恒成立,求实数的范围。

(3)根据有界变差函数的定义,我们先将区间进行划分,进而判断是否恒成立,进而得到结论。

(1)因为,因为,对称轴

所以在区间上是增函数,

又函数在区间上的最大值为,最小值为

所以

解得:

所以

故实数

(2)由(1)可知

因为,所以

因为对任意恒成立,

根据二次函数的图像和性质可得:

,则

解得:

所以

(3)函数上的有界变差函数,又上的单增函数,

且对任意划分

所以

所以存在常数M使得恒成立,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)设点分别为曲线与曲线上的任意一点,求的最大值;

2)设直线为参数)与曲线交于两点,且,求直线的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高铁是一种快捷的交通工具,为我们的出行提供了极大的方便。某高铁换乘站设有编号为①,②,③,④,⑤的五个安全出口,若同时开放其中的两个安全出口,疏散名乘客所需的时间如下:

安全出口编号

①②

②③

③④

④⑤

①⑤

疏散乘客时间(s)

120

220

160

140

200

则疏散乘客最快的一个安全出口的编号是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若有两个不同的零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

时,求曲线在点处的切线方程;

讨论的单调性;

时,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=xsinx的图象是下列两个图象中的一个,如图,请你选择后再根据图象作出下面的判断:若x1x2∈(),且fx1)<fx2),则(  

A.x1x2B.x1+x20C.x1x2D.x12x22

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知是圆的直径,在圆上且分别在的两侧,其中.现将其沿折起使得二面角为直二面角,则下列说法不正确的是(

A.在同一个球面上

B.时,三棱锥的体积为

C.是异面直线且不垂直

D.存在一个位置,使得平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,大衍数列024812….来源于《乾坤谱》中对《易传》大衍之数五十的推论,主要用于解释中国传统文化中的太极衍生过程中曾经经历过的两仪数量总和.下图是求大衍数列前项和的程序框图.执行该程序框图,输入,则输出的

A.100B.140C.190D.250

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若对任意恒成立,求实数的取值范围(为自然常数);

(3)求证:

查看答案和解析>>

同步练习册答案