精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

)讨论函数的单调区间.

)当时,设的两个极值点,恰为的零点,求的最小值.

【答案】(I)当时,的单调递增区间为,单调递减区间为时,的单调递增区间为(II).

【解析】

试题分析:(I)求出函数的导数,讨论的取值,利用导数判断函数的单调性与单调区间;(II)对函数求导数,利用极值的定义得出时存在两正根再利用判别式以及根与系数的关系,结合零点的定义,构造函数,利用导数即可求出函数的最小值

试题解析:函数

时,由解得,即当时,单调递增;

解得,即当时,单调递减;

时,,即上单调递增;

时,,故,即上单调递增;

时,的单调递增区间为,单调递减区间为

时,的单调递增区间为 ...(5分)

,则

的两根即为方程的两根;

...(7分)

的零点,

两式相减得,

,

,

...(10分)

因为,两边同时除以,得

,故,解得 ...(12分)

,则上是减函数,

.

的最小值为 ...(14分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数h(x)=(m2-5m+1)xm+1为幂函数,且为奇函数.

(I)求m的值;

(II)求函数g(x)=h(x)+x的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据悉遵义市红花岗区、汇川区2017年现有人口总数为110万人,如果年自然增长率为,试解答以下问题:

(1)写出经过年后,遵义市人口总数(单位:万人)关于的函数关系式;

(2)计算10年以后遵义市人口总数(精确到0.1万人);

(3)计算经过多少年后遵义市人口将达到150万人(精确到1年)

(参考数据

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=xlnx,g(x)=x3+ax2-x+2.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)对任意x∈(0,+∞),恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋中有红、白两种颜色的小球共7个,它们除颜色外完全相同,从中任取2个,都是白色小球的概率为,甲、乙两人不放回地从袋中轮流摸取一个小球,甲先取,乙后取,然后再甲取……,直到两人中有一人取到白球时游戏停止,用X表示游戏停止时两人共取小球的个数。

(1)求

(2)求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京时间3月15日下午,谷歌围棋人工智能与韩国棋手李世石进行最后一轮较量,获得本场比赛胜利,最终人机大战总比分定格在.人机大战也引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查.根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.

(1)根据已知条件完成如图列联表,并据此资料判断你是否有的把握认为“围棋迷”与性别有关?

(2)将上述调查所得到的频率视为概率.现在从该地区大量学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记所抽取的3名学生中的“围棋迷”人数为.若每次抽取的结果是相互独立的,求的分布列,期望和方差

附:,其中

0.05

0.010

3.74

6.63

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为D,若函数满足条件:存在,使上的值域为,则称为“倍缩函数”,若函数为“倍缩函数”,则实数的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点为,其左、右顶点为,椭圆与轴正半轴的交点为的外接圆的圆心在直线上.

I)求椭圆的方程;

II)已知直线是椭圆上的动点,,垂足为,是否存在点,使得为等腰三角形?若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的广告费用支出与销售额之间有如下的对应数据:

2

4

5

6

8

30

40

60

50

70

(1)画出散点图;并说明销售额y与广告费用支出x之间是正相关还是负相关?

(2)请根据上表提供的数据,求回归直线方程

(3)据此估计广告费用为10时,销售收入的值.

(参考公式:,).

查看答案和解析>>

同步练习册答案