精英家教网 > 高中数学 > 题目详情
如图,矩形 ADEF与梯形ABCD 所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点.    
(Ⅰ)求证:BM∥平面ADEF;
(Ⅱ)求证:BC⊥平面BDE.
分析:(Ⅰ)取DE中点N,连结MN,AN,证明四边形ABMN为平行四边形,从而可证BM∥平面ADEF;
(II)先证明ED⊥平面ABCD,可得ED⊥BC,再利用勾股定理,证明BC⊥BD,利用线面垂直的判定定理,证明BC⊥平面BDE.
解答:证明:(Ⅰ)取DE中点N,连结MN,AN.
在△EDC中,M,N分别为EC,ED的中点,…(2分)
所以MN∥CD,且MN=
1
2
CD

由已知AB∥CD,AB=
1
2
CD

所以MN∥AB,且MN=AB.
所以四边形ABMN为平行四边形.                 …(4分)
所以BM∥AN.
又因为AN?平面ADEF,且BM?平面ADEF,
所以BM∥平面ADEF.        …(6分)
(Ⅱ)在矩形ADEF中,ED⊥AD.
又因为平面ADEF⊥平面ABCD,
且平面ADEF∩平面ABCD=AD,
所以ED⊥平面ABCD.
所以ED⊥BC.                …(9分)
在直角梯形ABCD中,AB=AD=2,CD=4,可得BC=2
2

在△BCD中,BD=BC=2
2
,CD=4

因为BD2+BC2=CD2,所以BC⊥BD.
因为BD∩DE=D,所以BC⊥平面BDE.…(13分)
点评:本题考查线面平行,考查线面垂直,考查学生分析解决问题的能力,正确运用线面平行、垂直的判定定理是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,矩形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点. 
(Ⅰ)求证:BM∥平面ADEF;
(Ⅱ)求证:平面BDE⊥平面BEC;
(Ⅲ)若DE=3,求平面BEC与平面DEC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)如图,矩形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=1,CD=2,DE=4,M为CE的中点.
(Ⅰ)求证:BM∥平面ADEF:
(Ⅱ)求证:BC⊥平面BDE;
(Ⅲ)求三棱锥C-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=1,CD=2,DE=2,M为CE的中点.
(Ⅰ)求证:BM∥平面ADEF.
(Ⅱ)求二面角B-EC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•德州一模)如图,矩形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=1,CD=2,DE=3,M为CE的中点.
(Ⅰ)求证:BM∥平面ADEF;
(Ⅱ)求直线DB与平面BEC所成角的正弦值;
(Ⅲ)求平面BEC与平面DEC所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案