【题目】过点作抛物线的两条切线,切点分别为,,,分别交轴于,两点,为坐标原点,则与的面积之比为( )
A. B. C. D.
【答案】C
【解析】
求出切线方程,得出A,B两点坐标,计算E,F坐标,再计算三角形面积得出结论.
设过P点的直线方程为:y=k(x﹣2)﹣1,代入x2=4y可得x2﹣4kx+8k+4=0,①
令△=0可得16k2﹣4(8k+4)=0,解得k=1.
∴PA,PB的方程分别为y=(1+)(x﹣2)﹣1,y=(1﹣)(x﹣2)﹣1,
分别令y=0可得E(,0),F(1﹣,0),即|EF|=2.
∴S△PEF=
解方程①可得x=2k,
∴A(2+2,3+2),B(2﹣2,3﹣2),
∴直线AB方程为y=x+1,|AB|=8,
原点O到直线AB的距离d=,
∴S△OAB=,
∴△PEF与△OAB的面积之比为.
故答案为:C
科目:高中数学 来源: 题型:
【题目】已知某超市为顾客提供四种结账方式:现金、支付宝、微信、银联卡.若顾客甲没有银联卡,顾客乙只带了现金,顾客丙、丁用哪种方式结账都可以,这四名顾客购物后,恰好用了其中的三种结账方式,那么他们结账方式的可能情况有( )种
A. 19B. 7C. 26D. 12
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为 (为参数)。在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线。
(1)写出曲线,的普通方程;
(2)过曲线的左焦点且倾斜角为的直线交曲线于两点,求。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区上年度电价为元/(),年用电量为.本年度该地政府实行惠民政策,要求电力部门让利给用户,将电价下调到元/()至元/()之间,而用户的期望电价为元/().经测算,下调电价后新增用电量和实际电价与用户的期望电价的差成反比(比例系数为).该地区的电力成本价为元/().
(1)写出本年度电价下调后电力部门的收益(单位:元)关于实际电价(单位:元/()的函数解析式;(收益实际用电量(实际电价成本价))
(2)设,当电价最低定为多少时,可保证电力部门的收益比上年至多减少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且直线经过曲线的左焦点.
(1)求的值及直线的普通方程;
(2)设曲线的内接矩形的周长为,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】按照《国务院关于印发“十三五”节能减排综合工作方案的通知》(国发[2016〕74号)的要求,到2020年,全国化学需氧量排放总量要控制在2001万吨以内,要比2015年下降10%假设“十三五”期间每一年化学需氧量排放总量下降的百分比都相等,2015年后第年的化学需氧量排放总量最大值为万吨.
(1)求的解析式;
(2)求2019年全国化学需氧量排放总量要控制在多少万吨以内(精确到1万吨).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点.曲线的极坐标方程为.
(1)求直线的普通方程与曲线的直角坐标方程;
(2)过点作直线的垂线交曲线于两点(在轴上方),求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个工厂在某年连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:
x | 1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 |
y | 2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;
(2)①建立月总成本y与月产量x之间的回归方程;
②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?
(均精确到0.001)
附注:①参考数据:,
,
②参考公式:相关系数,
回归方程中斜率和截距的最小二乘估计公式分别为:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com