【题目】如图所示的空间几何体中,四边形是边长为2的正方形, 平面, , , , .
(1)求证:平面平面;
(2)求平面与平面所成的锐二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】已知圆,圆心为,定点, 为圆上一点,线段上一点满足,直线上一点,满足.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)为坐标原点, 是以为直径的圆,直线与相切,并与轨迹交于不同的两点.当且满足时,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为ɑ的正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.
(1)求直线C与平面ABCD所成角的正弦的值;
(2)求证:平面A B1D1∥平面EFG;
(3)求证:平面AA1C⊥面EFG .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超过x的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(Ⅰ)求直方图中a的值;
(Ⅱ)若将频率视为概率,从该城市居民中随机抽取3人,记这3人中月均用水量不低于3吨的人数为X,求X的分布列与数学期望.
(Ⅲ)若该市政府希望使85%的居民每月的用水量不超过标准x(吨),估计x的值(精确到0.01),并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 的右焦点为F,过椭圆C中心的弦PQ长为2,且∠PFQ=90°,△PQF的面积为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A1、A2分别为椭圆C的左、右顶点,S为直线 上一动点,直线A1S交椭圆C于点M,直线A2S交椭圆于点N,设S1、S2分别为△A1SA2、△MSN的面积,求 的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,AB//CD,且.
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某射手平时射击成绩统计如表:
环数 | 7环以下 | 7 | 8 | 9 | 10 |
概率 | a | b |
已知他射中7环及7环以下的概率为.
求a和b的值;
求命中10环或9环的概率;
求命中环数不足9环的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过抛物线的焦点,斜率为的直线交抛物线于 两点,且.
(1)求该抛物线的方程;
(2)过点任意作互相垂直的两条直线,分别交曲线于点和.设线段的中点分别为,求证:直线恒过一个定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}中,a2=2,a5=128.
(Ⅰ) 求数列{an}的通项公式;
(Ⅱ)若bn=,且数列{bn}的前项和为Sn=360,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com