精英家教网 > 高中数学 > 题目详情
已知椭圆具有性质:若A是椭圆C的一条与x轴不垂直的弦的中点,那么该弦的斜率等于点A的横、纵坐标的比值与某一常数的积.试对双曲线
x2
a2
-
y2
b2
=1
写出具有类似特性的性质,并加以证明.
分析:涉及中点弦问题,可使用点差法解决,设A(x1,y1)、B(x2,y2),中点为A(m,n),代入双曲线方程作差即可得直线斜率与中点原点连线斜率之间的关系.
解答:解:双曲线C:
x2
a2
-
y2
b2
=1
具有类似于椭圆的性质:若A是双曲线C的一条与x轴不垂直的弦的中点,那么该弦的斜率等于点A的横、纵坐标的比值与某一常数的积.
证明:设弦的两个端点是M(x1,y1),N(x2,y2),的中点为A(m,n)
则有:
x12
a2
-
y12
b2
=1
x22
a2
-
y22
b2
=1
,两式相减得:
x22-x12
a2
-
y22-y12
b2
=0⇒
(x2+x1)(x2-x1)
a2
-
(y2+y1)(y2-y1)
b2
=0

x2+x1=2m,y2+y1=2n,kMN=
y2-y1
x2-x1

代入上式得:kMN=
m
n
b2
a2
,(
b2
a2
为常数)
,得证.
点评:本题考查了类比推理、直线与双曲线的位置关系,特别是当直线与曲线相交并且与弦的中点有关时,可以使用联立方程组的办法,也可采用点差法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆具有性质:若M、N是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值.试对双曲线C′:
x2
a2
-
y2
b2
=1写出具有类似特性的性质,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•南宁二模)设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右两个焦点.
(Ⅰ)若椭圆C上的点A(1,
3
2
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
(Ⅱ)设点P是(Ⅰ)中所得椭圆上的动点,Q(0,
1
2
),求|PQ|的最大值;
(Ⅲ)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P在椭圆上任意一点,当直线PM、PN的斜率都存在,并记为KPM、KPN时,那么KPM与KPN之积是与点P位置无关的定值.设对双曲线
x2
a2
-
y2
b2
=1写出具有类似特性的性质(不必给出证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆具有性质:若A,B是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0且a,b为常数)上关于原点对称的两点,点P是椭圆上的任意一点,若直线PA和PB的斜率都存在,并分别记为kPA,kPB,那么kPA与kPB之积是与点P位置无关的定值-
b2
a2
.试对双曲线
x2
a2
-
y2
b2
=1(a>0,b>0且a,b为常数)写出类似的性质,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,P是椭圆上任意一点,则当直线PM,PN的斜率都存在时,其乘积恒为定值.类比椭圆,写出双曲线C′:
x2
a2
-
y2
b2
=1(a>0,b>0)
的类似性质,并加以证明.

查看答案和解析>>

同步练习册答案