【题目】已知定义在R上的函数满足以下三个条件:①对于任意的,都有;②对于任意的都有③函数的图象关于y轴对称,则下列结论中正确的是( )
A. B.
C. D.
【答案】B
【解析】
由①可知函数f(x)是周期T=4的周期函数; 由②可得函数f(x)在[0,2]上单调递增;由③可得函数f(x)的图象关于直线x=2对称.于是f(4.5)=f(0.5),f(7)=f(3)=f(1),f(6.5)=f(2.5)=f(1.5).即可得出结果.
定义在R上的函数y=f(x)满足以下三个条件:由①对于任意的x∈R,都有f(x+4)=f(x),可知函数f(x)是周期T=4的周期函数; ②对于任意的x1,x2∈R,且0≤x1<x2≤2,都有f(x1)<f(x2),可得函数f(x)在[0,2]上单调递增;③函数y=f(x+2)的图象关于y轴对称,可得函数f(x)的图象关于直线x=2对称.∴f(4.5)=f(0.5),f(7)=f(3)=f(1),f(6.5)=f(2.5)=f(1.5).∵f(0.5)<f(1)<f(1.5),∴f (4.5)<f (7)<f (6.5).
故选:B.
科目:高中数学 来源: 题型:
【题目】已知椭圆 的离心率为,左、右焦点分别是,以为圆心、3为半径的圆与以为圆心、1为半径的圆相交,交点在椭圆C上.
(1)求椭圆C的方程;
(2)直线与椭圆C交于A,B两点,点M是椭圆C的右顶点直线AM与直线BM分别与y轴交于点PQ,试问以线段PQ为直径的圆是否过x轴上的定点?若是,求出定点坐标;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校食堂对30名高三学生偏爱蔬菜与偏爱肉类进行了一次调查,将统计数据制成如下表格:
偏爱蔬菜 | 偏爱肉类 | |
男生人 | 4 | 8 |
女生人 | 16 | 2 |
(1)求这30名学生中偏爱蔬菜的概率;
(2)根据表格中的数据,是否有99.5%的把握认为偏爱蔬菜与偏爱肉类与性别有关?
附:,.
0 | 0 | 0 | |
6 | 7 | 10.8 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知的三边长分别为a,b,c,有以下四个命题:
①以,,为边长的三角形一定存在;
②以,,为边长的三角形一定存在;
③以,,为边长的三角形一定存在;
④以,,为边长的三角形一定存在.
其中正确的命题为( )
A.①③B.②③C.②④D.①④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数在时,函数值y的取值区间恰为[],就称区间为的一个“倒域区间”.定义在上的奇函数,当时,.
(Ⅰ)求的解析式;
(Ⅱ)求函数在内的“倒域区间”;
(Ⅲ)若函数在定义域内所有“倒域区间”上的图像作为函数=的图像,是否存在实数,使集合恰含有2个元素.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数设表示p、q中的较大值,表示p、q中的较小值)记的最小值为A,的最大值为B,则A-B=
A. 16 B. -16 C. a2-2a-16 D. a2+2a-1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设a,b∈(0,1)∪(1,+∞),定义运算:,则以下四个结论:①(2τ4)τ8=8τ(4τ2);②8τ(4τ2)>(8τ4)τ2>(2τ8)τ4;③(4τ2)=(2τ4)τ4<(2τ8)τ4;④.其中所有正确结论的序号为__.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com