精英家教网 > 高中数学 > 题目详情

【题目】已知定义在R上的函数满足以下三个条件:①对于任意的,都有;②对于任意的都有③函数的图象关于y轴对称,则下列结论中正确的是( )

A. B.

C. D.

【答案】B

【解析】

由①可知函数f(x)是周期T=4的周期函数; 由②可得函数f(x)在[0,2]上单调递增;由③可得函数f(x)的图象关于直线x=2对称.于是f(4.5)=f(0.5),f(7)=f(3)=f(1),f(6.5)=f(2.5)=f(1.5).即可得出结果.

定义在R上的函数y=f(x)满足以下三个条件:由①对于任意的x∈R,都有f(x+4)=f(x),可知函数f(x)是周期T=4的周期函数; ②对于任意的x1,x2∈R,且0≤x1<x2≤2,都有f(x1)<f(x2),可得函数f(x)在[0,2]上单调递增;③函数y=f(x+2)的图象关于y轴对称,可得函数f(x)的图象关于直线x=2对称.∴f(4.5)=f(0.5),f(7)=f(3)=f(1),f(6.5)=f(2.5)=f(1.5).∵f(0.5)<f(1)<f(1.5),∴f (4.5)<f (7)<f (6.5).

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,左、右焦点分别是,以为圆心、3为半径的圆与以为圆心、1为半径的圆相交,交点在椭圆C上.

(1)求椭圆C的方程;

(2)直线与椭圆C交于A,B两点,点M是椭圆C的右顶点直线AM与直线BM分别与y轴交于点PQ,试问以线段PQ为直径的圆是否过x轴上的定点?若是,求出定点坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,已知四边形为直角梯形,,且的中点,将沿折到位置(如图2),使得平面,连结,构成一个四棱锥

(1)求证

2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校食堂对30名高三学生偏爱蔬菜与偏爱肉类进行了一次调查,将统计数据制成如下表格:

偏爱蔬菜

偏爱肉类

男生

4

8

女生

16

2

1)求这30名学生中偏爱蔬菜的概率;

2)根据表格中的数据,是否有99.5%的把握认为偏爱蔬菜与偏爱肉类与性别有关?

附:.

0

0

0

6

7

10.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三边长分别为abc,有以下四个命题:

①以为边长的三角形一定存在;

②以为边长的三角形一定存在;

③以为边长的三角形一定存在;

④以为边长的三角形一定存在.

其中正确的命题为(

A.①③B.②③C.②④D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,函数,其导数为

1)当时,求的单调区间;

2)函数是否存在零点?说明理由;

3)设处取得最小值,求的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数时,函数值y的取值区间恰为[],就称区间的一个倒域区间.定义在上的奇函数,当时,

)求的解析式;

)求函数内的倒域区间

)若函数在定义域内所有倒域区间上的图像作为函数=的图像,是否存在实数,使集合恰含有2个元素.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数表示pq中的较大值,表示pq中的较小值)记的最小值为A的最大值为BA-B

A. 16 B. -16 C. a2-2a-16 D. a2+2a-1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】a,b∈(0,1)∪(1,+∞),定义运算:,则以下四个结论:①(2τ4)τ8=8τ(4τ2);②8τ(4τ2)>(8τ4)τ2>(2τ8)τ4;③(4τ2)=(2τ4)τ4<(2τ8)τ4;④.其中所有正确结论的序号为__

查看答案和解析>>

同步练习册答案