精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=(x-1)2,直线g(x)=4(x-1),数列{an}满足,(an+1-an)g(an)+f(an)=0
(n∈N*).(1)求数列{an}的通项公式;(2)设bn=3f(an)-g(an+1),求数列{bn}的最值及相应的n.
分析:(1)先根据f(x)和g(x)的解析式化简,(an+1-an)g(an)+f(an)=0),得(an+1-an)•4(an-1)+(an-1)2=0再用构造法求出数列{an}的通项公式.
(2)根据f(x)和g(x)的解析式及数列{an}的通项公式化简bn,再用二次函数求极值的方法求出数列{bn}的最值及相应的n.
解答:解:(1)∵(an+1-an)•4(an-1)+(an-1)2=0∴(an-1)(4an+1-3an-1)=0∵a1=2,
∴an≠1,4an+1-3an-1=0∴an+1-1=
3
4
(an-1),a1-1=1
数列an-1是首项为1,公比为
3
4
的等比数列
an-1=(
3
4
)n-1an=(
3
4
)n-1+1

(2)bn=3(an-1)2-4(an+1-1)=3[(
3
4
)
n-1
]2-4(
3
4
)n=3{[(
3
4
)
n-1
]
2
-(
3
4
)
n-1
}

bn=y,u=(
3
4
)n-1
y=3{(u-
1
2
)
2
-
1
4
}=3(u-
1
2
)2-
3
4
∵n∈N*
∴u的值分别为1,
3
4
9
16
27
64
,经比较
9
16
1
2
最近,
∴当n=3时,bn有最小值是-
189
256
,当n=1时,bn有最大值是0.
点评:此题考查数列和函数的综合应用,综合性强,做题时应认真审题,别丢条件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2(m-2)x+m-m2
(I)若函数的图象经过原点,且满足f(2)=0,求实数m的值.
(Ⅱ)若函数在区间[2,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c(a≠0)的图象过点(0,1),且与x轴有唯一的交点(-1,0).
(Ⅰ)求f(x)的表达式;
(Ⅱ)设函数F(x)=f(x)-kx,x∈[-2,2],记此函数的最小值为g(k),求g(k)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2-16x+q+3.
(1)若函数在区间[-1,1]上存在零点,求实数q的取值范围;
(2)若记区间[a,b]的长度为b-a.问:是否存在常数t(t≥0),当x∈[t,10]时,f(x)的值域为区间D,且D的长度为12-t?请对你所得的结论给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•广州一模)已知二次函数f(x)=x2+ax+m+1,关于x的不等式f(x)<(2m-1)x+1-m2的解集为(m,m+1),其中m为非零常数.设g(x)=
f(x)x-1

(1)求a的值;
(2)k(k∈R)如何取值时,函数φ(x)=g(x)-kln(x-1)存在极值点,并求出极值点;
(3)若m=1,且x>0,求证:[g(x+1)]n-g(xn+1)≥2n-2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知二次函数f(x)的图象与x轴的两交点为(2,0),(5,0),且f(0)=10,求f(x)的解析式.
(2)已知二次函数f(x)的图象的顶点是(-1,2),且经过原点,求f(x)的解析式.

查看答案和解析>>

同步练习册答案