【题目】设f(x)是定义在R上的奇函数,当x>0时,f(x)=x﹣1,则不等式f(x)<0的解集为( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣1,1)
D.(﹣1,0)∪(1,+∞)
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的前n项和为Sn,若Sm-1=-2,Sm=0,Sm+1=3,则m=( )
A. 5 B. 4 C. 3 D. 6
【答案】A
【解析】
根据数列前n项和的定义得到的值,再由数列的前n项和的公式得到,进而求得首项,由=2,解得m值.
Sm-1=-2,Sm=0,故得到 Sm=0,Sm+1=3,则,
根据等差数列的前n项和公式得到Sm=,得到首项为-2,故=2,解得m=5.
故答案为:A.
【点睛】
这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等。
【题型】单选题
【结束】
11
【题目】已知等比数列{an}的各项均为不等于1的正数,数列{bn}满足bn=lgan,b3=18,b6=12,则数列{bn}的前n项和的最大值等于( )
A. 126 B. 130 C. 132 D. 134
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是公比为正数的等比数列,,
(1)求的通项公式;
(2)设是首项为1,公差为2的等差数列,求数列的前项和
【答案】(1)(2)
【解析】
(1)根据等比数列的通项公式得到:,解得二次方程可得到或(舍去),进而得到数列的通项;(2)已知数列的类型是等差数列与等比数列求和的问题,根据等差等比数列求和公式得到结果即可.
解:(1)设为等比数列的公比,则由,得:
即,解得:或(舍去)
所以的通项公式为
(2) 由 等 差 数 列 的 通 项 公 式 得 到:
由 等 差 数 列求 和 公 式 和 等 比 数 列 前 n 项 和 公 式 得 到
【点睛】
这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等。
【题型】解答题
【结束】
18
【题目】设a≠b,解关于x的不等式a2x+b2(1-x)≥[ax+b(1-x)]2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C1的方程为,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点,O为坐标原点.
(1)求双曲线C2的方程;
(2)若直线l:y=kx+与双曲线C2恒有两个不同的交点A和B,且,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从1至9这9个自然数中任取两个:
恰有一个偶数和恰有一个奇数;至少有一个是奇数和两个数都是奇数;
至多有一个奇数和两个数都是奇数;至少有一个奇数和至少有一个偶数.
在上述事件中,是对立事件的是
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足 是等差数列,且b1=a1 , b4=a3 .
(1)求数列{an}和{bn}的通项公式;
(2)若 ,求数列{cn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=Asin(ωx+φ)满足:f( +x)=﹣f( ﹣x),且f( +x)=f( ﹣x),则ω的一个可能取值是( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣1,g(x)=﹣x2+4x﹣3,若存在f(a)=g(b),则实数b的取值范围为( )
A.[1,3]
B.(1,3)
C.
D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com