分析 (1)证明AC⊥平面PAB,即可判定PB与AC的位置关系;
(2)过A作AH⊥PC,垂足为H,则AH⊥平面PCD,利用等面积求顶点A到平面PCD的距离
解答 证明:(1)∵PA⊥平面ABCD,AC?平面ABCD,
∴PA⊥AC;…(2分)
在△ABC中,∠ABC=60°,BC=2,AB=1,
∴AC2=AB2+BC2-2 AB•BC cos60°=1+4-2=3,则AB2+AC2=BC2,
∴AB⊥AC;…(4分)
又PA∩AB=A,∴AC⊥平面PAB,
∵PB?平面PAB,
∴PB⊥AC;…(6分)
(2)由(1)知:AC⊥CD,又PA⊥CD,则CD⊥平面PAC,
∵CD?平面PCD,∴平面PCD⊥平面PAC;…(8分)
过A作AH⊥PC,垂足为H,则AH⊥平面PCD;…(10分)
在Rt△PAC中,AH=$\frac{PA•AC}{PC}$=$\frac{\sqrt{3}}{2}$.
即A到平面PCD的距离为$\frac{\sqrt{3}}{2}$…(12分).
点评 本题考查线面垂直的判定与性质,考查A到平面PCD的距离,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
对服务好评 | 对服务不满意 | 合计 | |
对商品好评 | 80 | 40 | 120 |
对商品不满意 | 70 | 10 | 80 |
合计 | 150 | 50 | 200 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{32π}{3}$ | B. | $\frac{20\sqrt{5}π}{3}$ | C. | 8$\sqrt{6}$π | D. | 36π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | P | B. | Q | C. | P∪Q | D. | P∩Q |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{\sqrt{2}}{3}$ | B. | $\frac{1}{3}$ | C. | -$\frac{\sqrt{2}}{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com