【题目】如图,在多面体中,底面是正方形,梯形底面,且.
(Ⅰ)证明平面平面;
(Ⅱ)平面将多面体分成两部分,求两部分的体积比.
【答案】(Ⅰ)证明见解析;(Ⅱ).
【解析】
(Ⅰ)取的中点,连接,可得,,即可得平面,从而证明平面平面;
(Ⅱ)作于,过作于,作,.
利用多面体的体积,求得多面体的体积,进而求得,得到答案.
(Ⅰ)由题意,多面体的底面是正方形,可得,
又由梯形底面,梯形底面,
平面,所以平面,
因为平面,所以,
因为梯形中,,
取的中点,连接,所以,所以,
又因为,所以平面,
又由平面,所以平面平面.
(Ⅱ)如图所示,作于,过作于,作,.
∵梯形底面,且.
∴面,面,
在中,由可得,
令,
则,,
多面体的体积为:.
由(1)及对称性可得平面,
∵,,∴到面的距离等于到面的距离的一半,
即到面的距离等于,
故.
∴平面将多面体分成两部分,两部分的体积比为.
科目:高中数学 来源: 题型:
【题目】设n为正整数,称n×n的方格表Tn的网格线的交点(共(n+1)2个交点)为格点.现将数1,2,……,(n+1)2分配给Tn的所有格点,使不同的格点分到不同的数.称Tn的一个1×1格子S为“好方格”,如果从2S的某个顶点起按逆时针方向读出的4个顶点上的数依次递增(如图是将数1,2,…,9分配给T2的格点的一种方式,其中B、C是好方格,而A、D不是好方格)设Tn中好方格个数的最大值为f(n).
(1)求f(2)的值;
(2)求f(n)关于正整数n的表达式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是定义在[-1,1]上的奇函数且,若ab∈[-1,1],a+b≠0,有成立.
(1)判断函数在[-1,1]上是增函数还是减函数,并加以证明.
(2)解不等式.
(3)若对所有, 恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex-x2 -kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点.
(1)求实数k的取值范围;
(2)证明:f(x)的极大值不小于1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知离心率为的椭圆的左顶点为,左焦点为,及点,且、、成等比数列.
(1)求椭圆的方程;
(2)斜率不为的动直线过点且与椭圆相交于、两点,记,线段上的点满足,试求(为坐标原点)面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数(,)的部分图象如图中实线所示,图中圆C与的图象交于M,N两点,且M在y轴上,则下列说法中正确的是( )
A.函数的最小正周期是2π
B.函数的图象关于点成中心对称
C.函数在单调递增
D.将函数的图象向左平移后得到的关于y轴对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.
某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以轴正半轴为极轴.已知曲线的极坐标方程为,曲线的极坐标方程为,射线,,与曲线分别交于异于极点O的四点A,B,C,D.
(1)若曲线关于对称,求的值,并求的参数方程;
(2)若 |,当时,求的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点到点的距离比到直线的距离小,设点的轨迹为曲线.
(1)求曲线的方程;
(2)过曲线上一点()作两条直线,与曲线分别交于不同的两点,,若直线,的斜率分别为,,且.证明:直线过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com