精英家教网 > 高中数学 > 题目详情

【题目】如图,在多面体中,底面是正方形,梯形底面,且

(Ⅰ)证明平面平面

(Ⅱ)平面将多面体分成两部分,求两部分的体积比.

【答案】(Ⅰ)证明见解析;(Ⅱ)

【解析】

(Ⅰ)取的中点,连接,可得,即可得平面,从而证明平面平面

(Ⅱ)作,过,作

利用多面体的体积,求得多面体的体积,进而求得,得到答案.

(Ⅰ)由题意,多面体的底面是正方形,可得

又由梯形底面,梯形底面

平面,所以平面

因为平面,所以

因为梯形中,

的中点,连接,所以,所以

又因为,所以平面

又由平面,所以平面平面

(Ⅱ)如图所示,作,过,作

∵梯形底面,且

中,由可得

多面体的体积为:

由(1)及对称性可得平面

,∴到面的距离等于到面的距离的一半,

到面的距离等于

∴平面将多面体分成两部分,两部分的体积比为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】n为正整数,称n×n的方格表Tn的网格线的交点((n+1)2个交点)为格点.现将数12……(n+1)2分配给Tn的所有格点,使不同的格点分到不同的数.Tn的一个1×1格子S好方格,如果从2S的某个顶点起按逆时针方向读出的4个顶点上的数依次递增(如图是将数129分配给T2的格点的一种方式,其中BC是好方格,而AD不是好方格)Tn中好方格个数的最大值为f(n).

1)求f(2)的值;

2)求f(n)关于正整数n的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在[-11]上的奇函数且,若ab∈[-11],a+b0,有成立.

1)判断函数在[-11]上是增函数还是减函数,并加以证明.

2)解不等式.

3)若对所有恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex-x2 -kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点.

(1)求实数k的取值范围;

(2)证明:f(x)的极大值不小于1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离心率为的椭圆的左顶点为,左焦点为,及点,且成等比数列.

1)求椭圆的方程;

2)斜率不为的动直线过点且与椭圆相交于两点,记,线段上的点满足,试求为坐标原点)面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数)的部分图象如图中实线所示,图中圆C的图象交于MN两点,且My轴上,则下列说法中正确的是(

A.函数的最小正周期是2π

B.函数的图象关于点成中心对称

C.函数单调递增

D.将函数的图象向左平移后得到的关于y轴对称

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.

某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】极坐标系与直角坐标系xOy有相同的长度单位,以原点O为极点,以轴正半轴为极轴.已知曲线的极坐标方程为,曲线的极坐标方程为,射线与曲线分别交于异于极点O的四点ABCD.

1)若曲线关于对称,求的值,并求的参数方程;

2)若 |,当时,求的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到点的距离比到直线的距离小,设点的轨迹为曲线.

1)求曲线的方程;

2)过曲线上一点)作两条直线与曲线分别交于不同的两点,若直线的斜率分别为,且.证明:直线过定点.

查看答案和解析>>

同步练习册答案