精英家教网 > 高中数学 > 题目详情
11.已知定义在R上的偶函数f(x),满足f(x)=-f(4-x),且当x∈[2,4)时,f(x)=log2(x-1),则f(19)的值为(  )
A.-2B.-1C.1D.2

分析 推导出函数的周期是8.再由当x∈[2,4)时,f(x)=log2(x-1),能求出f(19).

解答 解:∵定义在R上的偶函数f(x),满足f(x)=-f(4-x),
∴由题意定义在R上的偶函数f(x),满足f(x)=-f(4-x),
得f(x)=-f(x-4),此式恒成立,故可得f(x)=f(x-8),
由此式恒成立可得,此函数的周期是8.
又当x∈[2,4)时,f(x)=log2(x-1),
∴f(19)=f(3)=log2(3-1)=1.
故选:C.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知向量$\overrightarrow{a}$=(1,1),$\overrightarrow{b}$=(m,2),且$\overrightarrow{a}$•$\overrightarrow{b}$=1,则m的值为-1,a与b夹角的余弦值等于$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设f(x)=ax3+bx2+cx的极小值为-2,其导函数y=f′(x)的图象是经过点(-1,0),(1,0)开口向上的抛物线,如图所示.
(1)求f(x)的解析式;
(2)若m≠-2,且过点(1,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若a=log${\;}_{\frac{1}{2}}}$3,b=log3$\frac{1}{2}$,c=20.3,则(  )
A.a<b<cB.b<a<cC.b<c<aD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.方程log2(x+2)=$\sqrt{-x}$的实数解的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若不等式|x-2|+|x+3|>a恒成立,则a的取值范围是(  )
A.(-∞,1)B.(1,+∞)C.(-∞,5)D.(5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知$sin(2π-α)=\frac{3}{5}\;,\;α∈(\frac{3}{2}π\;,\;2π)$,则$\frac{sinα+cosα}{sinα-cosα}$=-$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.化简求值:
(1)$2\sqrt{3}×\root{3}{1.5}×\root{6}{12}×\sqrt{{{(3-π)}^2}}$;
(2)$lg25+\frac{2}{3}lg8+lg5•lg20+{(lg2)^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某几何体的三视图如图所示,该几何体的体积为(  )
A.24B.$\frac{70}{3}$C.20D.$\frac{68}{3}$

查看答案和解析>>

同步练习册答案