【题目】等差数列{an}的前n项和为Sn,a2+a15=17,S10=55.数列{bn}满足an=log2bn.
(1)求数列{bn}的通项公式;
(2)若数列{an+bn}的前n项和Tn满足Tn=S32+18,求n的值.
科目:高中数学 来源: 题型:
【题目】为了解小学生的体能情况,现抽取某小学六年级100名学生进行跳绳测试,观察记录孩子们三分钟内的跳绳个数,将所得的数据整理后画出频率分布直方图,跳绳个数的数值落在区间,,内的频率之比为.(计算结果保留小数点后面3位)
(Ⅰ)求这些学生跳绳个数的数值落在区间内的频率;
(Ⅱ)用分层抽样的方法在区间内抽取一个容量为6的样本,将该样本看成一个总体,从中任意选取2个学生,求这2个学生跳绳个数的数值都在区间内的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某书店销售刚刚上市的某高二数学单元测试卷,按事先拟定的价格进行5天试销,每种单价试销1天,得到如下数据:
单价x/元 | 18 | 19 | 20 | 21 | 22 |
销量y/册 | 61 | 56 | 50 | 48 | 45 |
(1)求试销天的销量的方差和关于的回归直线方程;
附: .
(2)预计以后的销售中,销量与单价服从上题中的回归直线方程,已知每册单元测试卷的成本是10元,为了获得最大利润,该单元测试卷的单价应定为多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+)(A>0,ω>0,||<)的部分图象如图所示.
(Ⅰ)求f(x)的解析式;
(Ⅱ)若对于任意的x∈[0,m],f(x)≥1恒成立,求m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线的方程为,以极点为原点,极轴所在直线为轴建立直角坐标,直线的参数方程为(为参数),与交于,两点.
(1)写出曲线的直角坐标方程和直线的普通方程;
(2)设点;若、、成等比数列,求的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为(α为参数),曲线C2的方程为(x-1)2+(y-1)2=2.
(1)在以O为极点,x轴的正半轴为极轴建立极坐标系,求曲线C1,C2的极坐标方程;
(2)直线θ=β(0<β<π)与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列说法:
①方程表示一个圆;
②若,则方程表示焦点在轴上的椭圆;
③已知点,若,则动点的轨迹是双曲线的右支;
④以过抛物线焦点的弦为直径的圆与该抛物线的准线相切,
其中正确说法的个数是( )
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com