精英家教网 > 高中数学 > 题目详情
设函数f(x)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)•f(n),且当x>0 时,0<f(x)<1.
(Ⅰ)若f(1)=
1
2
,求
f(1)+f(2)
f(1)
的值;
(Ⅱ)求证:f(0)=1,且当x<0时,有f(x)>1;
(Ⅲ)判断f(x)在R上的单调性,并加以证明.
分析:(1)利用赋值法,对于任意正实数m,n恒有f(m+n)=f(m)•f(n),可令m=n=1,先求出f(2),然后由f(1)=
1
2
,即可求出
f(1)+f(2)
f(1)
的值;
(2)赋值求出f(0)=1,令m=x,n=-x,代入恒等式即得证;
(3)先在定义域内任取两个值x1,x2,并规定大小,然后判定出f(x1),与f(x2)的大小关系,根据单调增函数的定义可知结论;
解答:解:(1)令m=n=1,则f(2)=f(1)f(1)=
1
4

f(1)+f(2)
f(1)
=
1
2
+
1
4
1
2
=
3
2

(2)证明:①令y=0,x=1,得f(1)=f(1)f(0)
∵x>0时,0<f(x)<1,
∴f(1)>0…(3分)
∴f(0)=1
②当x<0时,则-x>0,
令y=-x,得f(0)=f(x)f(-x)
f(x)=
1
f(-x)

由于当x>0时,0<f(x)<1
则0<f(-x)<1,即f(x)=
1
f(-x)
>1
故当x<0时,有f(x)>1
(3)函数f(x)在R上是单调递减函数
证明如下:设x1,x2∈R,且x1<x2
则x2-x1<0,∴0<f(x2-x1)<1
∴f(x2)=f[(x2-x1)+x1]=f(x2-x1)f(x1)<f(x1
∴函数f(x)在R上是单调递减函数.
点评:本题主要考查了抽象函数及其应用,以及函数单调性的判断与证明,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-
3
2
)与b=f(
15
2
)的大小关系为
a>b
a>b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)的定义域为D,若对于任意x1,x2∈D,当x1<x2时,都有f(x1)≤f(x2),则称函数f(x)在D上为非减函数.设函数f(x)为定义在[0,1]上的非减函数,且满足以下三个条件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③当x∈[0,
1
4
]
时,f(x)≥2x恒成立.则f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-数学公式)与b=f(数学公式)的大小关系为________.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省蚌埠二中高三(上)12月月考数学试卷(文科)(解析版) 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x-cosx,则a=f(-)与b=f()的大小关系为   

查看答案和解析>>

科目:高中数学 来源:山东省月考题 题型:填空题

设函数f(x)的定义在R上的偶函数,且是以4为周期的周期函数,当x∈[0,2]时,f(x)=2x﹣cosx,则a=f(﹣)与b=f()的大小关系为(    ).

查看答案和解析>>

同步练习册答案