精英家教网 > 高中数学 > 题目详情
直线2x+y-6=0与x轴、y轴的交点分别是A、B,则向量
AB
在x轴的正方向上的投影为
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:由题意画出图形,直接由数量积的几何意义得答案.
解答: 解:如图,

直线2x+y-6=0在x轴上的截距为3,
则向量
AB
在x轴的正方向上的投影为-|
AO
|
=-3.
故答案为:-3.
点评:本题考查了平面向量的数量积运算,考查了数量积的几何意义,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

贵州省2014年全省高中男生身高统计调查数据显示:全省100000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160cm和184cm之间,将测量结果按如下方式分成6组:第1组[160,164),第2组[164,168),…,第6组[180,184],如图是按上述分组方法得到的频率分布直方图.
(1)求这50名男生身高在172cm以上(含172cm)的人数;
(2)求全省高中男生身高排名(从高到低) 前130名中最低身高是多少;
(3)在这50名男生身高在172cm以上(含172cm)的人中任意抽取2人,将该2人中身高排名(从高到低)在全省前130名的人数记为X,求X的数学期望.
参考数据:
若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826,
P(μ-2σ<X≤μ+2σ)=0.9544,
P(μ-3σ<X≤μ+3σ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式:x+|x-1|≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|lnx|-
1
x+1
的两个零点为x1,x2,则有(  )
A、x1x2<1
B、x1x2=1
C、1<x1x2
2
D、x1x2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一块大理石表示的几何体的三视图如图所示,将该大理石切削、打磨加工成球体,则能得到的最大球体的体积为(  )
A、
3
B、
32π
3
C、36π
D、
256π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥S-ABCD的底面是边长为2的正方形,每条侧棱的长都是底面边长的
2
倍,P为侧棱SD上的点.
(Ⅰ)当SP:PD为何值时,直线SD⊥平面PAC,
(Ⅱ)在(1)的条件下,侧棱SC上是否存在一点E,使得BE∥平面PAC,若存在,求SE:EC的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B是以O为圆心的单位圆上的动点,且|
AB
|=
2
,则
OB
AB
=(  )
A、-1
B、1
C、-
2
2
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)满足f(a+x)+f(a-x)=2b(其中a,b不同时为0),则称函数y=f(x)为“准奇函数”,称点(a,b)为函数f(x)的“中心点”.现有如下命题:
①函数f(x)=sinx+1是准奇函数;
②若准奇函数y=f(x)在R上的“中心点”为(a,f(a)),则函数F(x)=f(x+a)-f(a)不是R上的奇函数;
③已知函数f(x)=x3-3x2+6x-2是准奇函数,则它的“中心点”为(1,2);
④已知函数f(x)=2x-cosx为“准奇函数”,数列{an}是公差为
π
8
的等差数列,若
7
n=1
f(an)=7π(其中
n
i=1
ai表示
n
i=1
ai=a1+a2+…+an),则
[f(a4)]2
a1a7
=
64
7

其中正确的命题是
 
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

小王在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个.
(Ⅰ)若小王发放5元的红包2个,求甲恰得1个的概率;
(Ⅱ)若小王发放3个红包,其中5元的2个,10元的1个.记乙所得红包的总钱数为X,求X的分布列和期望.

查看答案和解析>>

同步练习册答案