【题目】已知函数().
(Ⅰ)若,当时,求的单调递减区间;
(Ⅱ)若函数有唯一的零点,求实数的取值范围.
【答案】(1)和(2)
【解析】试题分析:(1)求具体函数单调区间,一是明确定义区间,二是正确求出导数,三是在定义区间上求导函数零点,四是列表分析导函数符号变化规律,得出结论(2)研究函数零点,首先分析、调整函数,使研究对象简单化、易求化: ,其次利用导数研究函数单调性:构造函数则当时, 单调递减;当单调递增,最后结合图像根据交点个数确定参数范围
试题解析:解:(1)定义域为,
的单调递减区间是和.
(2)问题等价于有唯一的实根
显然,则关于x的方程有唯一的实根
构造函数则
由得
当时,单调递减
当单调递增
所以的极小值为
如图,作出函数的大致图像,则要使方程的唯一的实根,
只需直线与曲线有唯一的交点,则或
解得
故实数a的取值范围是
科目:高中数学 来源: 题型:
【题目】已知直线L:kx-y+1+2k=0.
(1)求证:直线L过定点;
(2)若直线L交x轴负半轴于点A,交y正半轴于点B,△AOB的面积为S,试求S的最小值并求出此时直线L的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知焦点在轴上的椭圆的中心是原点,离心率为双曲线离心率的一半,直线被椭圆截得的线段长为.直线: 与轴交于点,与椭圆交于两个相异点,且.
(1)求椭圆的方程;
(2)是否存在实数,使?若存在,求的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣2x|x﹣a|(其中a∈R).
(1)当a=1时,求函数f(x)的值域;
(2)若y=f(x)在[0,2]上的最小值为﹣1,求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果一个实数数列{an}满足条件: (d为常数,n∈N*),则称这一数列“伪等差数列”,d称为“伪公差”.给出下列关于某个伪等差数列{an}的结论:①对于任意的首项a1 , 若d<0,则这一数列必为有穷数列;②当d>0,a1>0时,这一数列必为单调递增数列;③这一数列可以是一个周期数列;④若这一数列的首项为1,伪公差为3,- 可以是这一数列中的一项;n∈N*⑤若这一数列的首项为0,第三项为﹣1,则这一数列的伪公差可以是 .其中正确的结论是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
为了研究计算的方便,工作人员将上表的数据进行了处理, 得到下表2:
时间代号t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z关于t的线性回归方程;
(Ⅱ)通过(Ⅰ)中的方程,求出y关于x的回归方程;
(Ⅲ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于线性回归方程,其中)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆短轴端点和两个焦点的连线构成正方形,且该正方形的内切圆方程为.
(1)求椭圆的方程;
(2)若抛物线的焦点与椭圆的一个焦点重合,直线与抛物线交于两点,且,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知直线的参数方程为(为参数, ),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,圆的极坐标方程为.
(Ⅰ)讨论直线与圆的公共点个数;
(Ⅱ)过极点作直线的垂线,垂足为,求点的轨迹与圆相交所得弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥中, 面,底面是菱形,且, ,过点作直线, 为直线上一动点.
(1)求证: ;
(2)当二面角的大小为时,求的长;
(3)在(2)的条件下,求三棱锥的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com