精英家教网 > 高中数学 > 题目详情
10.若m<n,p<q且(p-m)(p-n)<0,(q-m)(q-n)<0,则m,n,p,q从小到大排列顺序是(  )
A.p<m<n<qB.m<p<q<nC.p<q<m<nD.m<n<p<q

分析 把p、q看成变量,则由(q-m)(q-n)<0,知m,n一个大于q,一个小于q.由m<n,知m<q<n;由(p-m)(p-n)<0,知m,n一个大于p,一个小于p,由m<n,知m<p<n.由p<q,知m<p<q<n.

解答 解:∵(q-m)(q-n)<0,
∴m,n一个大于q,一个小于q.
∵m<n,
∴m<q<n.
∵(p-m)(p-n)>0,
∴m,n一个大于p,一个小于p.
∵m<n,
∴m<p<n.
∵p<q,
∴m<p<q<n.
故选:B.

点评 本题考查不等式大小的比较,解题时要认真审题,仔细解答,注意不等式的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.若关于x的方程sin2x-(2+a)sinx+2a=0,x∈[-$\frac{π}{6}$,$\frac{5π}{6}$]上有两个实数根.
(1)设t=sinx,利用三角函数线,求t的取值范围;
(2)求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f(n)=cos($\frac{n}{2}$π+$\frac{π}{4}$)(n∈N*),求f(1)+f(2)+f(3)+…+f(2015)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若sin2β-sin2α=m,则sin(α+β)sin(α-β)=-m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系xoy中,P是双曲线$\frac{{x}^{2}}{16}-\frac{{y}^{2}}{16}$=1右支上一个动点,若点P到直线x-y+$\sqrt{3}$=0的距离大于a恒成立.则实数a的最大值为$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点C在以O为圆心的圆弧AB上运动(含端点).$\overrightarrow{OA}•\overrightarrow{OB}=0$,$\overrightarrow{OC}$=x$\overrightarrow{OA}$+2y$\overrightarrow{OB}$(x,y∈R),则$\frac{x}{2}+y$的取值范围是(  )
A.$[-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}]$B.$[\frac{1}{2},\frac{{\sqrt{2}}}{2}]$C.$[-\frac{1}{2},\frac{1}{2}]$D.$[-\frac{{\sqrt{2}}}{2},\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数$y=\frac{{\sqrt{x+3}}}{x}+lg({2-x})$的定义域为[-3,0)∪(0,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知正项数列{an}的首项a1=1,前n项的和为Sn,且满足:当n≥2时,an=$\sqrt{{S}_{n}}$+$\sqrt{{S}_{n-1}}$.
(1)证明:数列{$\sqrt{{S}_{n}}$}为等差数列.
(2)若数列{$\frac{1}{{a}_{n}•{a}_{n+1}}$}前n项的和为Tn,求Tn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知△ABC的一个顶点A(2,1),∠ABC的外角平分线是x=0,∠ACB的内角平分线是y=3x,求直线BC的方程.

查看答案和解析>>

同步练习册答案