精英家教网 > 高中数学 > 题目详情

【题目】一个袋中装有大小相同的球10个,其中红球8个,黑球2个,现从袋中有放回地取球,每次随机取1个. 求: (Ⅰ)连续取两次都是红球的概率;
(Ⅱ)如果取出黑球,则取球终止,否则继续取球,直到取出黑球,但取球次数最多不超过4次,求取球次数ξ的概率分布列及期望.

【答案】解:(Ⅰ)连续取两次都是红球的概率: ; (Ⅱ)ξ的可能取值为1,2,3,4,




∴ξ的概率分布列为

ξ

1

2

3

4

P

Eξ=1× +2× +3× +4× =
【解析】(Ⅰ)第一次和第二次取到红球的概率都是 ,由此能求出连续取两次都是红球的概率.(Ⅱ)ξ的可能取值为1,2,3,4,分别求出P(ξ=1),P(ξ=2),P(ξ=3),P(ξ=4).由此能求出ξ的概率分布列和Eξ.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数
(1)求f(x)单调递增区间;
(2)△ABC中,角A,B,C的对边a,b,c满足 ,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线C1 ( t 为参数),曲线C2 (r>0,θ为参数).
(1)当r=1时,求C 1 与C2的交点坐标;
(2)点P 为曲线 C2上一动点,当r= 时,求点P 到直线C1距离最大时点P 的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设Sn为各项不相等的等差数列an的前n 项和,已知a3a8=3a11 , S3=9.
(1)求数列{an}的通项公式;
(2)若bn= ,数列{bn}的前n 项和为Tn , 求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的程序框图输出的结果是S=720,则判断框内应填的条件是(
A.i≤7
B.i>7
C.i≤9
D.i>9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组一次为[20,40),[40,60),[60,80),[80,100).若低于60分的人数是15人,则该班的学生人数是(
A.45
B.50
C.55
D.60

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的离心率为 ,以原点O为圆心,椭圆C的长半轴为半径的圆与直线2x﹣ y+6=0相切.
(1)求椭圆C的标准方程;
(2)已知点A,B为动直线y=k(x﹣2)(k≠0)与椭圆C的两个交点,问:在x轴上是否存在点E,使 2+ 为定值?若存在,试求出点E的坐标和定值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中, (c为常数,n∈N*),且a1 , a2 , a5成公比不为1的等比数列. (Ⅰ)求证:数列 是等差数列;
(Ⅱ)求c的值;
(Ⅲ)设bn=anan+1 , 求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=3,n=3,输入的a依次为由小到大顺序排列的质数(从最小质数开始), 直到结束为止,则输出的s=(

A.9
B.27
C.32
D.103

查看答案和解析>>

同步练习册答案