精英家教网 > 高中数学 > 题目详情

【题目】已知等比数列{an}的前n项和为Sna11,且4Sn3Sn+12Sn+2成等差数列.

1)求{an}的通项公式;

2)若数列{bn}满足b10bn+1bn1,设cn,求数列{cn}的前2n项和.

【答案】1an2n1nN*2n2

【解析】

1)运用等差数列的中项性质可得3Sn+12Sn+Sn+2,即2an+1an+2,根据等比数列的定义,通项公式可求;

2)由等差数列的定义和通项公式,可得bn,求得cn,运用数列的分组求和,以及等差数列和等比数列的求和公式,可得所求和.

解:(1)由4Sn3Sn+12Sn+2成等差数列,

可得6Sn+14Sn+2Sn+2,即3Sn+12Sn+Sn+2

2Sn+1Sn)=Sn+2Sn+1

2an+1an+2,又{an}为等比数列,所以等比数列{an}的公比为2

a11,可得an2n1nN*

2)由b10bn+1bn1,可得{bn}是首项为0,公差为1的等差数列,

bnn1nN*

cn

所以{cn}的前2n项和为c1+c2++c2n=(a1+a3++a2n1+b2+b4++b2n

=(1+4+16++22n2+1+3++2n1

nn2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】己知点A是抛物线的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且满足,当取最大值时,点P恰好在以AB为焦点的双曲线上,则双曲线的离心率为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥中,底面是正方形,侧面底面的中点,点上,且.

1)求证:

2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,

(1)求证:平面平面

(2)在线段上是否存在点,使得平面与平面所成锐二面角为?若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,动直线交抛物线AB两点.

1)若,证明直线过定点,并求出该定点;

2)点M的中点,过点M作与y轴垂直的直线交抛物线C点;点N的中点,过点N作与y轴垂直的直线交抛物线于点P.设△的面积,△的面积为.

i)若过定点,求使取最小值时,直线的方程;

ii)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),直线经过点且倾斜角为,以原点为极点,轴的正半轴为极轴建立极坐标系.

1)求曲线的极坐标方程;

2)过原点作直线的垂线,垂足为交曲线于另一点,当变化时,求的面积的最大值及相应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD为正方形,PA⊥平面ABCDPA=ABE为线段PB的中点,F为线段BC上的动点.

1)求证:AE⊥平面PBC

2)试确定点F的位置,使平面AEF与平面PCD所成的锐二面角为30°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解高新产业园引进的甲公司前期的经营状况,市场研究人员对该公司2019年下半年连续六个月的利润进行了统计,统计数据列表如下:

月份

7

8

9

10

11

12

月份代码

1

2

3

4

5

6

月利润(万元)

110

130

160

150

200

210

1)请用相关系数说明月利润y(单位:万元)与月份代码x之间的关系的强弱(结果保留两位小数),求y关于x的线性回归方程,并预测该公司20201月份的利润;

2)甲公司新研制了一款产品,需要采购一批新型材料,己知生产新型材料的乙企业对AB两种型号各100件新型材料进行模拟测试,统计两种新型材料使用寿命频数如下表所示:

使用寿命

材料类型

1个月

2个月

3个月

4个月

总计

A

15

40

35

10

100

B

10

30

40

20

100

现有采购成本分别为10万元/件和12万元/件的AB两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,不同类型的新型材料损坏的时间各不相同,经甲公司测算,平均每件新型材料每月可以带来5万元收入,不考虑除采购成本之外的其他成本,假设每件新型材料的使用寿命都是整数月,且以频率估计每件新型材料使用寿命的概率,如果你是甲公司的负责人,以每件新型材料产生利润的期望值为决策依据,你会选择采购哪款新型材料?

参考公式:相关系数

回归直线方程为,其中.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:

方案1:运走设备,此时需花费4000元;

方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56000元;

方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.

(1)试求方案3中损失费X(随机变量)的分布列;

(2)试比较哪一种方案好.

查看答案和解析>>

同步练习册答案