精英家教网 > 高中数学 > 题目详情

【题目】下列五个命题:①直线的斜率,则直线的倾斜角的范围是;②直线与过两点的线段相交,则;③如果实数满足方程,那么的最大值为;④直线与椭圆恒有公共点,则的取值范围是;⑤方程表示圆的充要条件是;正确的是(

A.②③B.③④C.②⑤D.②③⑤

【答案】D

【解析】

①根据正切函数在图像,可判断直线的倾斜角的范围是,所以选项不正确;

②直线,结合图像可得,直线与过两点的线段相交时,,正确;

,则,转化为圆上的点与坐标原点连线的斜率,的最大值时,直线与圆相切,求出的最大值为,正确;

④直线方程点,直线与椭圆恒有公共点,只需点点在椭圆内或椭圆上,得到,结合方程表示椭圆,,因此不正确;

⑤方程配方,得出方程表示圆满足的条件,,解得,因此正确.

①设直线的倾斜角为,直线的斜率,则

直线的倾斜角的范围是,因此不正确;

②直线与过两点的线段相交,

直线经过

,正确;

③如果实数满足方程,设,则

当此直线与圆相切时,,解得

因此的最大值为,正确;

④直线方程点,直线与椭圆恒有公共点,

点在椭圆内或椭圆上,,且,因此不正确;

⑤方程配方为:

表示圆的充要条件是

解得,因此正确.

综上可得:正确的是②③⑤.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,侧棱底面

1)求二面角的正弦值;

2)点是线段的中点,点为线段上点,若直线与平面所成角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96106],样本数据分组为[9698),[98100),[100102)[102104),[104106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( ).

A. 90B. 75C. 60D. 45

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1a<1b<0,则下列不等式:1a+b<1ab;|a|+b>0;a-1a>b-1b;lna2>lnb2中,正确的是(  )

(A)①④  (B)②③  (C)①③  (D)②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:

(1)现从去年的消费金额超过3200元的消费者中随机抽取2人,求至少有1位消费者,其去年的消费者金额在的范围内的概率;

(2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表:

预计去年消费金额在内的消费者今年都将会申请办理普通会员,消费金额在内的消费者都将会申请办理银卡会员,消费金额在内的消费者都将会申请办理金卡会员,消费者在申请办理会员时,需一次性缴清相应等级的消费金额,该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案:

方案1:按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励:

普通会员中的“幸运之星”每人奖励500元;银卡会员中的“幸运之星”每人奖励600元;金卡会员中的“幸运之星”每人奖励800元.

方案二:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球,若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励. 规定每位普通会员均可参加1次摸奖游戏;每位银卡会员均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立)

请你预测哪一种返利活动方案该健身机构的投资较少?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,且椭圆上存在一点,满足.

(1)求椭圆的标准方程;

(2)过椭圆右焦点的直线与椭圆交于不同的两点,求的内切圆的半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】棱长为1的正方体中,点分别在线段上运动(不包括线段端点),且.以下结论:①;②若点分别为线段的中点,则由线确定的平面在正方体上的截面为等边三角形;③四面体的体积的最大值为;④直线与直线的夹角为定值.其中正确的结论为______.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数,数列,总有

1)求的通项公式;

2)设是数列的前项和,且,求的取值范围;

3)若数列满足:①的子数列(即中每一项都是的项,且按在中的顺序排列);②为无穷等比数列,它的各项和为,这样的数列是否存在?若存在,求出所有符合条件的数列.写出它的通项公式,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,曲线处的切线交轴于点

(1)求的值;

(2)若对于内的任意两个数,当时,恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案