【题目】下列五个命题:①直线的斜率,则直线的倾斜角的范围是;②直线:与过,两点的线段相交,则或;③如果实数,满足方程,那么的最大值为;④直线与椭圆恒有公共点,则的取值范围是;⑤方程表示圆的充要条件是或;正确的是( )
A.②③B.③④C.②⑤D.②③⑤
【答案】D
【解析】
①根据正切函数在图像,可判断直线的倾斜角的范围是,所以选项不正确;
②直线:过,结合图像可得,直线:与过,两点的线段相交时,或,正确;
③ 设,则,转化为圆上的点与坐标原点连线的斜率,的最大值时,直线与圆相切,求出的最大值为,正确;
④直线方程过点,直线与椭圆恒有公共点,只需点点在椭圆内或椭圆上,得到,结合方程表示椭圆,,因此不正确;
⑤方程配方,得出方程表示圆满足的条件,,解得或,因此正确.
①设直线的倾斜角为,直线的斜率,则,
直线的倾斜角的范围是,因此不正确;
②直线:与过,两点的线段相交,
直线经过,,,
则或,正确;
③如果实数,满足方程,设,则,
当此直线与圆相切时,,解得,
因此的最大值为,正确;
④直线方程过点,直线与椭圆恒有公共点,
点点在椭圆内或椭圆上,,且,因此不正确;
⑤方程配方为:
,
表示圆的充要条件是,
解得或,因此正确.
综上可得:正确的是②③⑤.
故选:D.
科目:高中数学 来源: 题型:
【题目】某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( ).
A. 90B. 75C. 60D. 45
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若<<0,则下列不等式:①<;②|a|+b>0;③a->b-;④lna2>lnb2中,正确的是( )
(A)①④ (B)②③ (C)①③ (D)②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某健身机构统计了去年该机构所有消费者的消费金额(单位:元),如图所示:
(1)现从去年的消费金额超过3200元的消费者中随机抽取2人,求至少有1位消费者,其去年的消费者金额在的范围内的概率;
(2)针对这些消费者,该健身机构今年欲实施入会制,详情如下表:
预计去年消费金额在内的消费者今年都将会申请办理普通会员,消费金额在内的消费者都将会申请办理银卡会员,消费金额在内的消费者都将会申请办理金卡会员,消费者在申请办理会员时,需一次性缴清相应等级的消费金额,该健身机构在今年底将针对这些消费者举办消费返利活动,现有如下两种预设方案:
方案1:按分层抽样从普通会员,银卡会员,金卡会员中总共抽取25位“幸运之星”给予奖励:
普通会员中的“幸运之星”每人奖励500元;银卡会员中的“幸运之星”每人奖励600元;金卡会员中的“幸运之星”每人奖励800元.
方案二:每位会员均可参加摸奖游戏,游戏规则如下:从一个装有3个白球、2个红球(球只有颜色不同)的箱子中,有放回地摸三次球,每次只能摸一个球,若摸到红球的总数为2,则可获得200元奖励金;若摸到红球的总数为3,则可获得300元奖励金;其他情况不给予奖励. 规定每位普通会员均可参加1次摸奖游戏;每位银卡会员均可参加2次摸奖游戏;每位金卡会员均可参加3次摸奖游戏(每次摸奖的结果相互独立)
请你预测哪一种返利活动方案该健身机构的投资较少?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,且椭圆上存在一点,满足.
(1)求椭圆的标准方程;
(2)过椭圆右焦点的直线与椭圆交于不同的两点,求的内切圆的半径的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】棱长为1的正方体中,点、分别在线段、上运动(不包括线段端点),且.以下结论:①;②若点、分别为线段、的中点,则由线与确定的平面在正方体上的截面为等边三角形;③四面体的体积的最大值为;④直线与直线的夹角为定值.其中正确的结论为______.(填序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:函数,数列对,总有;
(1)求的通项公式;
(2)设是数列的前项和,且,求的取值范围;
(3)若数列满足:①为的子数列(即中每一项都是的项,且按在中的顺序排列);②为无穷等比数列,它的各项和为,这样的数列是否存在?若存在,求出所有符合条件的数列.写出它的通项公式,并证明你的结论;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com