精英家教网 > 高中数学 > 题目详情
若存在常数k和b,使得函数f(x)和g(x)在它们的公共定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为函数f(x)和g(x)的“隔离直线”.已知f(x)=x2,g(x)=2elnx.
(I)求F(x)=f(x)-g(x)的极值;
(II)函数f(x)和g(x)是否存在隔离直线?若存在,求出此隔离直线的方程,若不存在,请说明理由.
分析:(1)根据求导公式,求出函数的导数,根据导数判断函数的单调性并求极值
(2)由(1)可知,函数f(x)和g(x)的图象在x=
e
处有公共点,因此存在f(x)和g(x)的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k.则隔离直线方程为y-e=k(x-
e
,即y=kx-k
e
+e,构造函数,求出函数函数的导数,根据导数求出函数的最值
解答:解:(1)∵F(x)=f(x)-g(x)=x2-2clnx(x>0),
∴F′(x)=2x-
2c
x
=(2x2-2c)/x=
2(x-
e
)(x+
e
x

令F′(X)=0,得x=
e

当0<x<
e
时,F′(X)<0,X>
e
时,F′(x)>0
故当x=
e
时,F(x)取到最小值,最小值是0
(2)由(1)可知,函数f(x)和g(x)的图象在x=
e
处有公共点,因此存在f(x)和g(x)的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k.则隔离直线方程为y-e=k(x-
e
,即y=kx-k
e
+e
由f(x)≥kx-k
e
+e(x?R),可得x2-kx-k
e
+e,
由f(x)≥kx-k
e
+e(x?R),可得x2-kx+k
e
-e≥0当x?R恒成立,
则△=k2-4k
e
+4e=(k-2
c
2≤0,只有k=2
e
,此时直线方程为:y=2
e
x-e,
下面证明g(x)≤2
e
x-eexx>0时恒成立
令G(x)=2
e
x-e-g(x)=2
e
x-e-2elnx,
G′(X)=2
c
-
2c
x
=(2
c
x-2c)/x=2
c
(x-
e
)/x,
当x=
e
时,G′(X)=0,当0<x<
e
时G′(X)>0,
则当x=
e
时,G(x)取到最小值,极小值是0,也是最小值.
所以G(x)=2
e
x-e-g(x)≥0,则g(x)≤2
e
x-e当x>0时恒成立.
∴函数f(x)和g(x)存在唯一的隔离直线y=2
e
x-e
点评:考查函数的求导,利用导数求最值,属于简单题,主要做题要仔细.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•临沂二模)已知函数f(x)=elnx,g(x)=lnx-x-1,h(x)=
1
2
x2

(Ⅰ)求函数g(x)的极大值.
(Ⅱ)求证:存在x0∈(1,+∞),使g(x0)=g(
1
2
)

(Ⅲ)对于函数f(x)与h(x)定义域内的任意实数x,若存在常数k,b,使得f(x)≤kx+b和h(x)≥kx+b都成立,则称直线y=kx+b为函数f(x)与h(x)的分界线.试探究函数f(x)与h(x)是否存在“分界线”?若存在,请给予证明,并求出k,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若存在实常数k和b,使函数f(x)和g(x)对其定义域上的任意实数x恒有:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)和g(x)的“隔离直线”.已知h(x)=x2,φ(x)=2elnx,则可推知h(x),φ(x)的“隔离直线”方程为
y=2
e
x-e
y=2
e
x-e

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求证:“{an}是等差数列”的充要条件是“存在常数k和b,使an=kn+b对一切n∈N*都成立”;
(2)试问:是否存在等差数列{an}满足an=an2-nan+1(n∈N*)?若存在,请求出通项公式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年江苏省高三12月练习数学试卷 题型:填空题

若存在实常数k和b,使函数对其定义域上的任意实数x恒有:

,则称直线 的“隔离直线”。

已知,则可推知的“隔离直线”方程为   ▲     

 

查看答案和解析>>

科目:高中数学 来源:2013年山东省临沂市高考数学二模试卷(理科)(解析版) 题型:解答题

已知函数
(Ⅰ)求函数g(x)的极大值.
(Ⅱ)求证:存在x∈(1,+∞),使
(Ⅲ)对于函数f(x)与h(x)定义域内的任意实数x,若存在常数k,b,使得f(x)≤kx+b和h(x)≥kx+b都成立,则称直线y=kx+b为函数f(x)与h(x)的分界线.试探究函数f(x)与h(x)是否存在“分界线”?若存在,请给予证明,并求出k,b的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案