精英家教网 > 高中数学 > 题目详情
5.若{an}是公比为2的等比数列,且其前4项和为1,则该数列的前8项和是(  )
A.2B.9C.16D.17

分析 由已知条件利用等比数列前n项和公式先求出首项,由此能求出该数列的前8项和.

解答 解:∵{an}是公比为2的等比数列,且其前4项和为1,
∴${S}_{4}=\frac{{a}_{1}(1-{2}^{4})}{1-2}$=1,解得a1=$\frac{1}{15}$,
∴该数列的前8项和S8=$\frac{\frac{1}{15}(1-{2}^{8})}{1-2}$=17.
故选:D.

点评 本题考查等比数列的前8项和的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知抛物线y2=2px(p>0)上有两个动点A,B及一个定点M(x0,y0),F是抛物线的焦点,且|AF|,|MF|,|BF|成等差数列.求证:线段AB的垂直平分线经过定点Q(x0+p,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知z=$\frac{{{(\sqrt{3}+i)}^{2}(4+3i)}^{3}}{{(\sqrt{2}+i)}^{2}}$,求|z|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=sin2x.
(1)求f(x)的最小正周期;
(2)求f(x)在区间[-$\frac{π}{6}$,$\frac{π}{2}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=sin2x+1.
(1)画出f(x)在x∈[0,π]上的图象;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知奇函数f(x)为定义域在R上的可导函数,f(1)=0,当x>0时,xf′(x)-f(x)<0,则x2f(x)>0的解集是(  )
A.(-∞,-1)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-1,0)∪(0,1)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=Asin(ωx+φ)(A>0,ω>0)为偶函数的充要条件是(  )
A.φ=$\frac{π}{2}$+2kπ(k∈Z)B.φ=$\frac{π}{2}$+kπ(k∈Z)C.$\frac{φ}{ω}$=$\frac{π}{2}$+2kπ(k∈Z)D.$\frac{φ}{ω}$=$\frac{π}{2}$+kπ(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设数列{an}满足:an≠0,a1=1,a2=2,an-1(an+1-an)=a2n,n≥2.
(1)设bn=$\frac{{a}_{n+1}}{{a}_{n}}$,求证:{bn}为等差数列;
(2)设cn=$\frac{n}{{a}_{n+1}}$,且{cn}的前n项和为Sn,证明:Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1的离心率e=3,直线y=x+2与双曲线交于A,B两点,若OA⊥OB,求双曲线的方程.

查看答案和解析>>

同步练习册答案