精英家教网 > 高中数学 > 题目详情
9.如图,抛物线C1:y2=2px(p>0)和圆C2:(x-1)2+y2=r2(r>0),M为圆C2的圆心,过抛物线C1的焦点F的直线y=k(x-$\frac{p}{2}$)与C1交于A,B两点,与圆C2交与C,D两点(点C在A,B之间)且△AOF的外心到抛物线C1的准线的距离为$\frac{3}{4}$.
(I)求抛物线C的方程
(Ⅱ)若圆C2:(x-1)2+y2=$\frac{33}{8}$,且|AC|=|BD|,求直线AB的方程.

分析 (Ⅰ)由抛物线方程求出其准线方程,结合△AOF的外心到抛物线C1的准线的距离为$\frac{3}{4}$求得p,则抛物线方程可求;
(Ⅱ)写出过抛物线C1的焦点F的直线y=k(x-$\frac{1}{2}$),由|AC|=|BD|,得|AB|=|CD|,联立直线与抛物线方程,求出|AB|,再由直线和圆的位置关系求出|CD|,由|AB|=|CD|,得到关于k的方程,求出k后可得直线方程.

解答 解:(Ⅰ)由抛物线C1:y2=2px(p>0),得其准线方程为x=-$\frac{p}{2}$,
∵△AOF的外心到抛物线C1的准线的距离为$\frac{3}{4}$,
∴$\frac{p}{4}-(-\frac{p}{2})=\frac{3p}{4}=\frac{3}{4}$,则p=1.
∴抛物线方程为y2=2x;
(Ⅱ)抛物线方程为y2=2x,圆的方程为(x-1)2+y2=$\frac{33}{8}$,过抛物线C1的焦点F的直线y=k(x-$\frac{1}{2}$),
∵|AC|=|BD|,∴|AB|=|CD|,
联立$\left\{\begin{array}{l}{y=k(x-\frac{1}{2})}\\{{y}^{2}=2x}\end{array}\right.$,可得kx2-$({k}^{2}+2)x+\frac{1}{4}{k}^{2}=0$,
设A(x1,y1),B(x2,y2),则${x}_{1}+{x}_{2}=\frac{{k}^{2}+2}{{k}^{2}}$,
∴|AB|=${x}_{1}+{x}_{2}+1=\frac{{k}^{2}+2}{{k}^{2}}+1=\frac{2({k}^{2}+1)}{{k}^{2}}$.
又M(1,0),r=$\sqrt{\frac{33}{8}}$.
点M(1,0)到$kx-y-\frac{k}{2}=0$的距离d=$\frac{|k-\frac{k}{2}|}{\sqrt{{k}^{2}+1}}=\frac{|k|}{2\sqrt{{k}^{2}+1}}$.
$|CD|=2\sqrt{{r}^{2}-{d}^{2}}=2\sqrt{\frac{33}{8}-\frac{{k}^{2}}{4({k}^{2}+1)}}$=$2\sqrt{\frac{31{k}^{2}+33}{8({k}^{2}+1)}}$.
∵|AB|=|CD|,
∴$\frac{{k}^{2}+1}{{k}^{2}}=\sqrt{\frac{31{k}^{2}+33}{8({k}^{2}+1)}}$
由观察法可知:k2=1.∴k=±1.
∴AB:$y=x-\frac{1}{2}$或$y=-x+\frac{1}{2}$.

点评 本题主要考查了抛物线的应用,平面解析式的基础知识.考查了考生的基础知识的综合运用和知识迁移的能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知1+sinθ$\sqrt{1-co{s}^{2}θ}+cosθ\sqrt{1-si{n}^{2}θ}$=0,则θ的取值范围是[2kπ+π,$2kπ+\frac{3π}{2}$],k∈Z,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知角α的终边落在直线y=$\sqrt{2}$x上.求sinα,cosα,tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足an+1=an+2(n∈N+)且a1,a3,a7成等比.
(1)求数列{an}的通项公式.
(2)设数列{bn}满足bn+1-bn=an(n∈N+)且b1=2,求数列$\left\{{\frac{1}{b_n}}\right\}$得前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为$\frac{1}{2}$的小正方体堆积成的正方体).其中实圆•代表钠原子,空间圆?代表氯原子.建立空间直角坐标系Oxyz后,图中最上层中间的钠原子所在位置的坐标是(  )
A.($\frac{1}{2}$,$\frac{1}{2}$,1)B.(0,0,1)C.(1,$\frac{1}{2}$,1)D.(1,$\frac{1}{2}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.写出命题“末位数字是0的多位数是5的倍数”的否命题,并判断其真假.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知a>0,a≠1,求使关于x的方程$1o{g_{\sqrt{a}}}(x-2ka)=1o{g_a}({x^2}-{a^2})$有解时k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=$\sqrt{x+1}$+$\frac{(x-1)^{0}}{\sqrt{2-x}}$的定义域是[-1,1)∪(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)是定义在R上的偶函数,当0≤x<3时,y=x;当x≥3时,$y=-\frac{1}{3}{(x-3)^2}+3$
(1)在下面的直角坐标系中直接画出函数f(x)的图象;
(2)根据函数图象写出f(x)的单调区间和值域.

查看答案和解析>>

同步练习册答案