精英家教网 > 高中数学 > 题目详情

【题目】一只红铃虫的产卵数y和温度x有关,现收集了6组观测数据于下表中,通过散点图可以看出样本点分布在一条指数型函数y=的图象的周围.

(1)试求出y关于x的上述指数型的回归曲线方程(结果保留两位小数);

(2)试用(1)中的回归曲线方程求相应于点(24,17)的残差.(结果保留两位小数)

温度x(°C)

20

22

24

26

28

30

产卵数y()

6

9

17

25

44

88

z=lny

1.79

2.20

2.83

3.22

3.78

4.48

几点说明:

①结果中的都应按题目要求保留两位小数.但在求时请将的值多保留一位即用保留三位小数的结果代入.

②计算过程中可能会用到下面的公式:回归直线方程的斜率==,截距.

③下面的参考数据可以直接引用:=25,=31.5,≈3.05,=5248,≈476.08,,ln18.17≈2.90.

【答案】(1);(2)

【解析】

(1)由已知条件结合计算公式求出的值,继而得到回归直线方程

(2)由(1)得回归直线方程,代入点(24,17)计算出残差

(1)设z关于x的回归直线方程为

=

保留三位小数:≈0.265,保留两位小数:≈0.27

=≈3.05-0.265×25≈-3.58

∴z=lny关于x的回归直线方程为=0.27x-3.58

∴y关于x的指数型的回归曲线方程为=

(2)相应于点(24,17)的残差=y-=17-=17-

≈17-=17-18.17=-1.17

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在矩形中,AB=2AD,为DC的中点,将△ADM沿AM折起使平面ADM⊥平面ABCM.

(1)当AB=2时,求三棱锥的体积;

(2)求证:BM⊥AD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别为椭圆的左、右焦点,且.

(1)求椭圆的方程;

(2)设为椭圆上任意一点,以为圆心,为半径作圆,当圆与直线有公共点时,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某区的区人大代表有教师6人,分别来自甲、乙、丙、丁四个学校,其中甲校教师记为,乙校教师记为,丙校教师记为,丁校教师记为.现从这6名教师代表中选出3名教师组成十九大报告宣讲团,要求甲、乙、丙、丁四个学校中,每校至多选出1.

(1)请列出十九大报告宣讲团组成人员的全部可能结果;

(2)求教师被选中的概率;

(3)求宣讲团中没有乙校教师代表的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集UR,集合B{y|y2xx1}C{x|2axa+1}

1)求AUB

2)若CAB),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二1班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,且将全班25人的成绩记为由右边的程序运行后,输出.据此解答如下问题:

求茎叶图中破损处分数在[50,60,[70,80,[80,90各区间段的频数;

利用频率分布直方图估计该班的数学测试成绩的众数中位数分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为为坐标原点,是抛物线上异于的两点.

(1)求抛物线的方程;

(2)若直线的斜率之积为,求证:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(常数).

(1)讨论的单调性;

(2)设的导函数,求证:.

查看答案和解析>>

同步练习册答案