精英家教网 > 高中数学 > 题目详情
8.指出由正弦曲线y=sinx经过怎样的步骤可以得到正弦型曲线y=2sin($\frac{1}{3}x+\frac{π}{6}$).

分析 根据三角函数的图象变换关系进行求解即可.

解答 解:y=sinx向左平移$\frac{π}{6}$个单位得到y=sin(x+$\frac{π}{6}$),
然后纵坐标不变,横坐标缩短到原来的3倍,得到y=sin($\frac{1}{3}x+\frac{π}{6}$),
最后横坐标不变,纵坐标伸长到原来的2,得到y=2sin($\frac{1}{3}x+\frac{π}{6}$).

点评 本题主要考查y=Asin(ωx+∅)的图象变换,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设a是实数,g(x)是指数函数,且g(x)的图象过点(2,4),若f(x)=a-$\frac{2}{g(x)+1}$(x∈R).
(1)试证明:对于任意的a,f(x)在R上为增函数;
(2)试确定a的值,使f(x)为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若△ABC的面积S=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{4}$,则角C的大小是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在正六棱柱ABCDEF-A1B1C1D1E1F1中,用$\overrightarrow{AB}$,$\overrightarrow{AF}$,$\overrightarrow{A{A}_{1}}$表示向量$\overrightarrow{A{D}_{1}}$,其结果为$\overrightarrow{A{D}_{1}}$=$\overrightarrow{A{A}_{1}}$+2($\overrightarrow{AB}$+$\overrightarrow{AF}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.判断下列函数的奇偶性:
(1)f(x)=cos($\frac{3}{2}$π+2x)+x2sinx;
(2)f(x)=$\sqrt{1-2cosx}$+$\sqrt{2cosx-1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列说法:
①如果非零向量$\overrightarrow{a}$与$\overrightarrow{b}$的方向相同或相反,那么$\overrightarrow{a}$+$\overrightarrow{b}$的方向必与$\overrightarrow{a}$,$\overrightarrow{b}$之一的方向相同;
②△ABC中,必有$\overrightarrow{AB}$$+\overrightarrow{BC}$+$\overrightarrow{CA}$=$\overrightarrow{0}$;
③若$\overrightarrow{AB}$+$\overrightarrow{BC}$$+\overrightarrow{CA}$=$\overrightarrow{0}$,则A,B,C为一个三角形的三个顶点;
④若$\overrightarrow{a}$,$\overrightarrow{b}$均为非零向量,则|$\overrightarrow{a}$+$\overrightarrow{b}$|与|$\overrightarrow{a}$|+|$\overrightarrow{b}$|一定相等.
其中正确说法的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知抛物线x2=2y过抛物线的焦点F的直线l交抛物线于P,Q两点,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,平面ABC∩平面FBC,其中GH∥DE,求证:GH∥BC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合${M}=\left\{{y\left|{y=\frac{1}{x^2}}\right.}\right\}$,${N}=\left\{{x\left|{y=\sqrt{x-2}}\right.}\right\}$,那么 M∩N=(  )
A.(0,+∞)B.[0,+∞)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

同步练习册答案