精英家教网 > 高中数学 > 题目详情

【题目】一个正方体的平面展开图及该正方体的直观图的示意图如图所示.

(1)请按字母FGH标记在正方体相应地顶点处(不需要说明理由)

(2)判断平面BEG与平面ACH的位置关系.并说明你的结论;

(3)证明:直线DF平面BEG.

【答案】1)见解析;(2平面BEG平面ACH;(3)证明见解析

【解析】试题分析:(1)折叠成正方体即可得出;(2)根据条件可证四边形BCEH为平行四边形,因此BE∥CH线面平行判定定理即可得证;(3)根据DH平面EFGH可得DHEGEGFH,可证EG平面BFHD所以DFEG,同理可证同理DFBG所以命题得证.

试题解析:

 (1)FGH的位置如图所示.

(2)平面BEC平面ACH.证明如下:

因为ABCDEFGH为正方体,所以BCFGBCFG

FGEHFGEH,所以BCEHBCEH

于是四边形BCEH为平行四边形,

所以BECH

CH平面ACHBE平面ACH

所以BE平面ACH

同理,BG平面ACH

BEBGB

所以平面BEG平面ACH

(3)连接FHEG于点O,连接BD

因为ABCDEFGH为正方体,所以DH平面EFGH

因为EG平面EFGH,所以DHEG

EGFHEGFHO

所以EG平面BFHD

DF平面BFHD,所以DFEG

同理DFBG

EGBGG

所以DF平面BEG

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,P是四边形ABCD所在平面外的一点,四边形ABCDDAB60°且边长为a的菱形侧面PAD为正三角形,其所在平面垂直于底面ABCD

1GAD边的中点,求证:BG平面PAD

2求证:ADPB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,直线l1的参数方程为 ,(t为参数),直线l2的参数方程为 ,(m为参数).设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cosθ+sinθ)﹣ =0,M为l3与C的交点,求M的极径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各对直线不互相垂直的是 (  )

A. l1的倾斜角为120°,l2过点P(1,0),Q(4, )

B. l1的斜率为-l2过点P(1,1),Q

C. l1的倾斜角为30°,l2过点P(3, )Q(42)

D. l1过点M(1,0),N(4,-5),l2过点P(-6,0),Q(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱锥C1B1CD1后得到的几何体如图所示.四边形ABCD为正方形,OACBD的交点,EAD的中点,A1E⊥平面ABCD.

(1)证明:A1O∥平面B1CD1

(2)设MOD的中点,证明:平面A1EM⊥平面B1CD1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线a,b和平面M,N,且a⊥M,则下列说法正确的是 (  )

A. b∥Mb⊥a B. b⊥ab∥M

C. N⊥Ma∥N D. aNM∩N≠

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,BCDCAEDCMN分别是ADBE的中点,将三角形ADE沿AE折起,则下列说法正确的是________(填序号).

①不论D折至何位置(不在平面ABC内),都有MN∥平面DEC;②不论D折至何位置,都有MNAE;③不论D折至何位置(不在平面ABC内),都有MNAB;④在折起过程中,一定存在某个位置,使ECAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2﹣alnx(a∈R)
(1)若函数f(x)在x=2处的切线方程为y=x+b,求a,b的值;
(2)讨论方程f(x)=0解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=ax2-2ax+1+b(a>0)在区间[2,4]上的最大值为9,最小值为1,记f(x)=g(|x|)。

(1)求实数a,b的值;

(2)若不等式f(2k)>1成立,求实数k的取值范围;

(3)定义在[p,q]上的函数(x),设p=x0<x1<…<xi-1<xi<…<xn=q,x1,x2,…,xn-l将区间[p,q]任意划分成n个小区间,如果存在一个常数M>0,使得和式恒成立,则称函数(x)为在[p,q]上的有界变差函数试判断函数f(x)是否为在[0,4]上的有界变差函数?若是,求M的最小值;若不是,请说明理由。

查看答案和解析>>

同步练习册答案