A. | $(-∞,0]∪[\frac{1}{4},+∞)$ | B. | $(-∞,-\frac{1}{4}]∪[0,+∞)$ | C. | $[-\frac{1}{4},0]$ | D. | (-∞,1] |
分析 由求导公式和法则求出f′(x),由条件和导数与函数单调性的关系分类讨论,分别列出不等式进行分离常数,再构造函数后,利用整体思想和二次函数的性质求出函数的最值,可得a的取值范围.
解答 解:由题意得,f′(x)=$\frac{1}{x}+a-\frac{1}{{x}^{2}}$,
因为$f(x)=lnx+ax+\frac{1}{x}$在[1,+∞)上是单调函数,
所以f′(x)≥0或f′(x)≤0在[1,+∞)上恒成立,
①当f′(x)≥0时,则$\frac{1}{x}+a-\frac{1}{{x}^{2}}≥0$在[1,+∞)上恒成立,
即a≥$\frac{1}{{x}^{2}}-\frac{1}{x}$,设g(x)=$\frac{1}{{x}^{2}}-\frac{1}{x}$=$(\frac{1}{x}-\frac{1}{2})^{2}-\frac{1}{4}$,
因为x∈[1,+∞),所以$\frac{1}{x}$∈(0,1],
当$\frac{1}{x}$=1时,g(x)取到最大值是:0,
所以a≥0,
②当f′(x)≤0时,则$\frac{1}{x}+a-\frac{1}{{x}^{2}}≤0$在[1,+∞)上恒成立,
即a≤$\frac{1}{{x}^{2}}-\frac{1}{x}$,设g(x)=$\frac{1}{{x}^{2}}-\frac{1}{x}$=$(\frac{1}{x}-\frac{1}{2})^{2}-\frac{1}{4}$,
因为x∈[1,+∞),所以$\frac{1}{x}$∈(0,1],
当$\frac{1}{x}$=$\frac{1}{2}$时,g(x)取到最大值是:$-\frac{1}{4}$,
所以a≤$-\frac{1}{4}$,
综上可得,a≤$-\frac{1}{4}$或a≥0,
所以数a的取值范围是(-∞,$-\frac{1}{4}$]∪[0,+∞),
故选:B.
点评 本题查求导公式和法则,导数与函数单调性的关系,以及恒成立问题的转化,考查分离常数法,整体思想、分类讨论思想,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | $\sqrt{3}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com