精英家教网 > 高中数学 > 题目详情

【题目】正项数列的前项和为,且.

)试求数列的通项公式;

)设,求的前项和为.

)在()的条件下,若对一切恒成立,求实数的取值范围.

【答案】;(;(.

【解析】

(Ⅰ)将所给条件式子两边同时平方,利用递推法可得的表达式,两式相减,变形即可证明数列为等差数列,进而结合首项与公差求得的通项公式.

(Ⅱ)由(Ⅰ)中可求得.代入即可求得数列的通项公式,利用裂项法即可求得前项和.

(Ⅲ)先求得的取值范围,结合不等式,即可求得的取值范围.

(Ⅰ)因为正项数列的前项和为,

化简可得

由递推公式可得

两式相减可得,变形可得

,由正项等比数列可得

所以

而当,解得

所以数列是以为首项,为公差的等差数列

因而

(Ⅱ)由(Ⅰ)可知

代入中可得

所以

(Ⅲ)由(Ⅱ)可知

,所以数列为单调递增数列,

且当, ,

所以

因为对一切恒成立

则满足,解不等式组可得

即实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第行的所有数字之和为,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前15项和为( )

A. 110B. 114C. 124D. 125

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且.

1)求数列的通项公式;

2)设,数列的前项和为,求使不等式对一切都成立的正整数的最大值.

3)设,是否存在,使得成立?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】每年的金秋十月,越野e族阿拉善英雄会在内蒙古自治区阿拉善盟阿左旗腾格里沙漠举行,该项目已打造成集沙漠竞技运动、汽车文化极致体验、主题休闲度假为一体的超级汽车文化赛事娱乐综合体.为了减少对环境的污染,某环保部门租用了特制环保车清洁现场垃圾.通过查阅近5年英雄会参会人数(万人)与沙漠中所需环保车辆数量(辆),得到如下统计表:

参会人数(万人)

11

9

8

10

12

所需环保车辆(辆)

28

23

20

25

29

(1)根据统计表所给5组数据,求出关于的线性回归方程

(2)已知租用的环保车平均每辆的费用(元)与数量(辆)的关系为

.主办方根据实际参会人数为所需要投入使用的环保车,

每辆支付费用6000元,超出实际需要的车辆,主办方不支付任何费用.预计本次英雄会大约有14万人参加,根据(Ⅰ)中求出的线性回归方程,预测环保部门在确保清洁任务完成的前提下,应租用多少辆环保车?获得的利润是多少?(注:利润主办方支付费用租用车辆的费用).

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在四棱锥中,底面是边长为的正方形,的中点,是线段上异于端点的一点,平面 平面.

(Ⅰ)证明:

(Ⅱ)与平面所成的角的正弦值为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥平面,已知,点分别为的中点.

(1)求证:平面;

(2)在线段上,满足平面,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)已知是虚数, 是实数.

(1)求为何值时, 有最小值,并求出|的最小值;

(2)设,求证: 为纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列有关命题的说法正确的是___(请填写所有正确的命题序号).

①命题“若,则”的否命题为:“若,则”;

②命题“若,则”的逆否命题为真命题;

③条件,条件,则的充分不必要条件;

④已知时,,若是锐角三角形,则.

查看答案和解析>>

同步练习册答案