精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆,四点中恰有三点在椭圆上。

(1)求的方程:

(2)椭圆上是否存在不同的两点关于直线对称?若存在,请求出直线的方程,若不存在,请说明理由;

(3)设直线不经过点且与相交于两点,若直线与直线的斜率的和为1,求证:过定点。

【答案】(1)(2)

【解析】

(1) 结合椭圆几何特征,可得在椭圆上,解方程即得椭圆的方程.(2) 设直线,线段中点为,利用椭圆的中点弦性质求得中点即得m=-.(3),根据已知得到所以直线,即得直线经过的定点坐标.

(1)结合椭圆几何特征,可得在椭圆上,所以b=1,,

解得方程为.

(2)设直线,线段中点为,根据椭圆中点弦性质,联立解得中点

(3)设,联立得

直线,所以k(x+2)-1-y=0,所以x+2=0且-1-y=0,所以x=-2,y=-1,

所以直线经过定点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若根据10名儿童的年龄x(岁)和体重y(kg)数据用最小二乘法得到用年龄预报体重的回归方程是=2x+7.已知这10名儿童的年龄分别是2岁、3岁、3岁、5岁、2岁、6岁、7岁、3岁、4岁、5岁,则这10名儿童的平均体重大约是(  )

A. 14 kg B. 15 kg

C. 16 kg D. 17 kg

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P-ABCD中,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.

(1)证明:AE⊥PD;

(2)若AB=2,PA=2,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下命题,其中真命题的个数是( )

①若是假命题,则是真命题;

②命题,则为真命题;

③若,则

④直线与双曲线交于,两点,若,则这样的直线有3条;

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从1,2,3,4,5中随机取出两个不同的数,则其和为奇数的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥P﹣ABC中,D为AB的中点.

(1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下:
(2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,直线y= x为曲线y=f(x)的切线(e为自然对数的底数).
(1)求实数a的值;
(2)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x﹣ }(x>0),若函数h(x)=g(x)﹣cx2为增函数,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修:4﹣2:矩阵与变换
若圆C:x2+y2=1在矩阵 (a>0,b>0)对应的变换下变成椭圆E: ,求矩阵A的逆矩阵A1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假定小麦基本苗数x与成熟期有效穗y之间存在相关关系,今测得5组数据如下:

x

15.0

25.58

30.0

36.6

44.4

y

39.4

42.9

42.9

43.1

49.2

(1)x为解释变量,y为预报变量,作出散点图;

(2)yx之间的线性回归方程,对于基本苗数56.7预报其有效穗;

(3)计算各组残差,并计算残差平方和;

(4)R2,并说明残差变量对有效穗的影响占百分之几.

查看答案和解析>>

同步练习册答案