精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)=ax3﹣bx+4,当x=2时,函数f(x)有极值为 , (Ⅰ)求函数f(x)的解析式;
(Ⅱ)若f(x)=k有3个解,求实数k的取值范围.

【答案】解:(Ⅰ)f′(x)=3ax2﹣b 由题意; ,解得
∴所求的解析式为
(Ⅱ)由(1)可得f′(x)=x2﹣4=(x﹣2)(x+2)
令f′(x)=0,得x=2或x=﹣2,
∴当x<﹣2时,f′(x)>0,当﹣2<x<2时,f′(x)<0,当x>2时,f′(x)>0
因此,当x=﹣2时,f(x)有极大值
当x=2时,f(x)有极小值
∴函数 的图象大致如图.

由图可知:
【解析】(1)先对函数进行求导,然后根据f(2)=﹣ .f'(2)=0可求出a,b的值,进而确定函数的解析式.(2)根据(1)中解析式然后求导,然后令导函数等于0求出x的值,然后根据函数的单调性与其导函数的正负之间的关系确定单调性,进而确定函数的大致图象,最后找出k的范围.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减),还要掌握函数的极值与导数(求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有下列说法: ①函数y=﹣cos2x的最小正周期是π;
②终边在y轴上的角的集合是{α|α= ,k∈Z};
③在同一直角坐标系中,函数y=sinx的图象和函数y=x的图象有三个公共点;
④函数f(x)=4sin(2x+ )(x∈R)可以改写为y=4cos(2x﹣ );
⑤函数y=sin(x﹣ )在[0,π]上是减函数.
其中,正确的说法是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为奇函数.
(1)若函数f(x)在区间 上为单调函数,求m的取值范围;
(2)若函数f(x)在区间[1,k]上的最小值为3k,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=ax2+bx,(a,b为常数,且a≠0)满足条件f(2﹣x)=f(x﹣1),且方程f(x)=x有两个相等的实根.
(1)求f(x)的解析式;
(2)设g(x)=kx+1,若F(x)=g(x)﹣f(x),求F(x)在[1,2]上的最小值;
(3)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]与[2m,2n],若存在,求出m,n的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数Z=(m2+5m+6)+(m2﹣2m﹣15)i,当实数m为何值时:
(1)Z为实数;
(2)Z为纯虚数;
(3)复数Z对应的点Z在第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】圆C过点M(5,2),N(3,2)且圆心在x轴上,点A为圆C上的点,O为坐标原点.
(1)求圆C的方程;
(2)连接OA,延长OA到P,使得|OA|=|AP|,求点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 f(x)= (a>0且a≠1)
(1)若a=2,解不等式f(x)≤5;
(2)若函数f(x)的值域是[4,+∞),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°

(1)证明:AB⊥A1C;
(2)若AB=CB=2,A1C= ,求三棱柱ABC﹣A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,DC⊥平面BCEF,且四边形ABCD为矩形,四边形BCEF为直角梯形,BF∥CE,BC⊥CE,DC=CE=4,BC=BF=2.

(1)求证:AF∥平面CDE;
(2)求平面AEF与平面ABCD所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案