精英家教网 > 高中数学 > 题目详情

【题目】如图,正四棱锥P﹣ABCD中,底面ABCD的边长为4,PD=4,E为PA的中点,

(1)求证:平面EBD⊥平面PAC;
(2)求直线BE与平面PBD所成角的正弦值.

【答案】
(1)证明:设AC,BD交点为O,连结PO.则O为正方形ABCD的中心,

∴PO⊥平面ABCD.∵BD平面ABCD,

∴PO⊥BD.

∵四边形ABCD是正方形,∴BD⊥AC.

又AC平面PAC,PO平面PAC,AC∩PO=O,

∴BD⊥平面PAC,又BD平面EBD,

∴平面EBD⊥平面PAC.


(2)解:以O为原点,以OA,OB,OP为坐标轴建立空间直角坐标系,

∵正四棱锥的棱长为4,∴OA=OB=OD=2 ,OP= =2

∴A(2 ,0,0),B(0,2 ,0),P(0,0,2 ),∴E( ,0, ).

=( ,﹣2 ).

显然x轴⊥平面PBD.∴ =(1,0,0)是平面PBD的一个法向量,

= ,| |=1,| |=2

∴cos< >= =

∴直线BE与平面PBD所成角的正弦值为


【解析】(1)设AC,BD交点为O,连结PO,则PO⊥平面ABCD,于是PO⊥BD,又BD⊥AC,故而BD⊥平面PAC,于是平面EBD⊥平面PAC;(2)以O为原点,以OA,OB,OP为坐标轴建立空间直角坐标系,则 =(1,0,0)为平面PBD的一个法向量,求出cos< >,则|cos< >|即为所求.
【考点精析】解答此题的关键在于理解平面与平面垂直的判定的相关知识,掌握一个平面过另一个平面的垂线,则这两个平面垂直,以及对空间角的异面直线所成的角的理解,了解已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在某次考试中,从甲乙两个班各抽取10名学生的数学成绩进行统计分析,两个班成绩的茎叶图如图所示.

(Ⅰ)求甲班的平均分;

从甲班和乙班成绩90100的学生中抽取两人求至少含有甲班一名同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方形 .以的中点为原点建立如图所示的平面直角坐标系.

(1)求以为焦点,且过两点的椭圆的标准方程;

(2)过点的直线交(1)中椭圆于两点,是否存在直线,使得弦为直径的圆恰好过原点?若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD﹣A1B1C1D1的棱长为a,若E为棱AB的中点,

求四棱锥B1﹣BCDE的体积

求证:面B1DC⊥面B1DE

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:曲线C:(m+2x2+my2=1表示双曲线,命题q:方程y2=m2﹣1x表示的曲线是焦点在x轴的负半轴上的抛物线,若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆的极坐标方程为

(1)若直线l与圆相切,求的值;

(2)若直线l与曲线为参数)交于AB两点,点,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,点E,F分别为AB和PD中点。

(1)求直线AF与EC所成角的正弦值;

(2)求PE与平面PDB所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|+m|x+a|.
(1)当m=a=﹣1时,求不等式f(x)≥x的解集;
(2)不等式f(x)≥2(0<m<1)恒成立时,实数a的取值范围是{a|a≤﹣3或a≥3},求实数m的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)判断函数的奇偶性,并加以证明;

2)用定义证明上是减函数;

3)函数上是单调增函数还是单调减函数?(直接写出答案,不要求写证明过程).

查看答案和解析>>

同步练习册答案