精英家教网 > 高中数学 > 题目详情

【题目】右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”. 执行该程序框图,若输入的分别为16,20,则输出的( )

A. 0B. 2C. 4D. 1

【答案】C

【解析】

此程序框图是选择结构图与循环结构的综合,输入a,b值后,模拟程序逐层判断,得出结果。

解:输入的值,分别为16,20,

第一次循环:第一层判断:满足,进入第二层选择结构,

第二层判断:不满足,满足,故

第二次循环:第一层判断:满足,进入第二层选择结构,

第二层判断:满足,故

第三次循环:第一层判断:满足,进入第二层选择结构,

第二层判断:满足,故

第四次循环:第一层判断:满足,进入第二层选择结构,

第二层判断:满足,故

第五次循环:第一层判断:满足,故输出4,选C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】有黑扫黑、无黑除恶、无恶治乱,维护社会稳定和和平发展.扫黑除恶期间,大量违法分子主动投案,某市公安机关对某月连续7天主动投案的人员进行了统计,表示第天主动投案的人数,得到统计表格如下:

1

2

3

4

5

6

7

3

4

5

5

5

6

7

1)若具有线性相关关系,请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

2)判定变量之间是正相关还是负相关.(写出正确答案,不用说明理由)

3)预测第八天的主动投案的人数(按四舍五入取到整数).

参考公式: ./span>

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究男、女生的身高差异,现随机从高二某班选出男生、女生各10人,并测量他们的身高,测量结果如下(单位:厘米):

男:164 178 174 185 170 158 163 165 161 170

女:165 168 156 170 163 162 158 153 169 172

(1)根据测量结果完成身高的茎叶图(单位:厘米),并分别求出男、女生身高的平均值.

(2)请根据测量结果得到20名学生身高的中位数(单位:厘米),将男、女生身高不低于和低于的人数填入下表中,并判断是否有的把握认为男、女生身高有差异?

人数

男生

女生

身高

身高

参照公式:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(3)若男生身高低于165厘米为偏矮,不低于165厘米且低于175厘米为正常,不低于175厘米为偏高.假设可以用测量结果的频率代替概率,试求从高二的男生中任意选出2人,恰有1人身高属于正常的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为研究男、女生的身高差异,现随机从高二某班选出男生、女生各10人,并测量他们的身高,测量结果如下(单位:厘米):

男:164 178 174 185 170 158 163 165 161 170

女:165 168 156 170 163 162 158 153 169 172

(1)根据测量结果完成身高的茎叶图(单位:厘米),并分别求出男、女生身高的平均值.

(2)请根据测量结果得到20名学生身高的中位数(单位:厘米),将男、女生身高不低于和低于的人数填入下表中,并判断是否有的把握认为男、女生身高有差异?

人数

男生

女生

身高

身高

参照公式:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

.024

6.635

7.879

10.828

(3)若男生身高低于165厘米为偏矮,不低于165厘米且低于175厘米为正常,不低于175厘米为偏高.假设可以用测量结果的频率代替概率,试求从高二的男生中任意选出2人,恰有1人身高属于正常的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,直线的参数方程为为参数,),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)若,求直线的普通方程及曲线的直角坐标方程;

(Ⅱ)若直线与曲线有两个不同的交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,其上一点在准线上的射影为,△恰为一个边长为4的等边三角形.

1)求抛物线的方程;

2)若过定点的直线交抛物线两点,为坐标原点)的面积为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)

在平面直角坐标系xOy中,椭圆C:(ab0)的上顶点到焦点的距离为2,离心率为

(1)求a,b的值.

(2)设P是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点.

若k=1,求OAB面积的最大值;

)若PA2+PB2的值与点P的位置无关,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程为,直线,直线 .以极点为原点,极轴为轴的正半轴建立平面直角坐标系.

(1)求直线的直角坐标方程以及曲线的参数方程;

(2)已知直线与曲线交于两点,直线与曲线交于两点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在常数,使得对定义域内的任意,都有成立,则称函数在其定义域 上是“利普希兹条件函数”.

(1)若函数是“利普希兹条件函数”,求常数的最小值;

(2)判断函数是否是“利普希兹条件函数”,若是,请证明,若不是,请说明理由;

(3)若是周期为2的“利普希兹条件函数”,证明:对任意的实数,都有

查看答案和解析>>

同步练习册答案