精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
3
x3-
a
2
x2-2a2x+1   (a>0)

(1)求函数f(x)的极值;
(2)若函数y=f(x)的图象与直线y=0恰有三个交点,求实数a的取值范围;
(3)已知不等式f'(x)<x2-x+1对任意a∈(1,+∞)都成立,求实数x的取值范围.
分析:(1)讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值.
(2)先求出极大值与极小值,要使函数y=f(x)的图象与值线y=0恰有三个交点,则函数y=f(x)的极大值大于零,极小值小于零即可.
(3)先进行化简,然后变量分离,转化成x>
2a2+1
1-a
对任意a∈(1,+∞)都成立,则x大于
2a2+1
1-a
的最大值,利用基本不等式研究函数的最大值,求出变量x的范围即可.
解答:解:(1)∵f′(x)=x2-ax-2a2,令f′(x)=x2-ax-2a2=0,则  x=-a或x=2a
f′(x)=x2-ax-2a2>0时,x<-a或x>2a
x=-a时,f(x)取得极大值f(-a)=
7
6
a3+1
,x=2a时,f(x)取极小值
f(2a)=-
10
3
a3+1

(2)要使函数y=f(x)的图象与值线y=0恰有三个交点,则函数y=f(x)的极大值大于零,极小值小于零,由(1)的极值可得
7
6
a3 +1>0
-
10
3
a3+1<0
解之得a>
3
3
10
=
3300
10

(3)要使f′(x)<x2-x+1对任意a∈(1,+∞)都成立
即x2-ax-2a2<x2-x+1,
(1-a)x<2a2+1
∵a∈(1,+∞)∴1-a<0
x>
2a2+1
1-a
对任意a∈(1,+∞)都成立,则x大于
2a2+1
1-a
的最大值
2a2+1
1-a
=-
2(a-1)2+4(a-1)+3
a-1
=-[2(a-1)+
3
a-1
+4]

由a∈(1,+∞),a-1>0,∴2(a-1)+
3
a-1
≥2
6

当且仅当a=1+
6
2
时取等号,∴
2a2+1
1-a
≤-(2
6
+4)

x>(
2a2+1
1-a
)max=-(4+2
6
)
点评:本题主要考查了利用导数研究函数的极值,以及函数恒成立问题,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)、已知函数f(x)=
1+
2
cos(2x-
π
4
)
sin(x+
π
2
)
.若角α在第一象限且cosα=
3
5
,求f(α)

(2)函数f(x)=2cos2x-2
3
sinxcosx
的图象按向量
m
=(
π
6
,-1)
平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-
a
x
)ex
,若同时满足条件:
①?x0∈(0,+∞),x0为f(x)的一个极大值点;
②?x∈(8,+∞),f(x)>0.
则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+lnx
x

(1)如果a>0,函数在区间(a,a+
1
2
)
上存在极值,求实数a的取值范围;
(2)当x≥1时,不等式f(x)≥
k
x+1
恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+
1
x
,(x>1)
x2+1,(-1≤x≤1)
2x+3,(x<-1)

(1)求f(
1
2
-1
)
与f(f(1))的值;
(2)若f(a)=
3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x)如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=
1-m•2x1+m•2x

(1)m=1时,求函数f(x)在(-∞,0)上的值域,并判断f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,1]上是以3为上界的有界函数,求m的取值范围.

查看答案和解析>>

同步练习册答案