精英家教网 > 高中数学 > 题目详情

【题目】设实数,椭圆的右焦点为F,过F且斜率为k的直线交DPQ两点,若线段PQ的中点为N,点O是坐标原点,直线ON交直线于点M

若点P的横坐标为1,求点Q的横坐标;

求证:

的最大值.

【答案】(1)(2)证明见解析(3)

【解析】

,直线PQ的方程与椭圆方程联立,利用根与系数的关系,即可求出,

设线段PQ的中点为利用根与系数的关系及其中点坐标公式可得N的坐标联立可得M的坐标,可证明

根据弦长公式求出,利用基本不等式的性质即可得出.

解:可得焦点,设

直线PQ的方程为:

联立,化为:

P的横坐标为1

解得

Q的横坐标为

线段PQ的中点为

可得

直线ON的方程为

联立,可得

故最小值为,当且仅当,即时取等号,

的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为为参数), 椭圆C的参数方程为为参数)。在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点A的极坐标为(2,

(1)求椭圆C的直角坐标方程和点A在直角坐标系下的坐标

(2)直线l与椭圆C交于P,Q两点,求△APQ的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】上海地铁四通八达,给市民出行带来便利,已知某条线路运行时,地铁的发车时间间隔(单位:分字)满足:,经测算,地铁载客量与发车时间间隔满足,其中.

1)请你说明的实际意义;

2)若该线路每分钟的净收益为(元),问当发车时间间隔为多少时,该线路每分钟的净收益最大?并求最大净收益.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知在平面直角坐标系中,圆的参数方程为 (为参数).以原点为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标系.

(I)求圆的普通方程及其极坐标方程;

(II)设直线的极坐标方程为,射线与圆的交点为,与直线的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数处的切线方程;

2)当时,证明:函数只有一个零点;

3)若函数的极大值等于,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;

(2)设点的极坐标为,点在曲线上,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知在平面直角坐标系中,圆的参数方程为 (为参数).以原点为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标系.

(I)求圆的普通方程及其极坐标方程;

(II)设直线的极坐标方程为,射线与圆的交点为,与直线的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)时,讨论函数的单调性;

(2)使得不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是三条不同的直线,是三个不同的平面,给出下列四个命题:

①若,则

②若,则

③若是两条异面直线,,则

④若,则.

其中正确命题的序号是(

A.①③B.①④C.②③D.②④

查看答案和解析>>

同步练习册答案