精英家教网 > 高中数学 > 题目详情

(本题满分13分) 已知函数

(1)当时,若上单调递减,求a的取值范围;

(2)求满足下列条件的所有整数对:存在,使得的最大值, 的最小值;

 

【答案】

(1)当时,,     ………………………………………1分

    若,则上单调递减,符合题意;………3分

    若,要使上单调递减,

    必须满足 ……………………………………………………5分

    ∴.综上所述,a的取值范围是   …………………………………6分

    (2)若,则无最大值, 故,∴为二次函数,       

    要使有最大值,必须满足

,             …………………………………………8分

    此时,时,有最大值.  ………………………………………9分

    又取最小值时,,  ………………………………………………………10分

    依题意,有,则,  …………11分

    ∵,∴,得,   ………………12分

    此时

    ∴满足条件的整数对.    …………………………13分

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届天津市高一第一次月考数学试卷(解析版) 题型:解答题

(本题满分13分)

已知集合.

(1) 求;   (2) 若,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012届浙江省宁波万里国际学校高三上期中理科数学试卷(解析版) 题型:解答题

(本题满分13分)的三个内角依次成等差数列.

   (Ⅰ)若,试判断的形状;

   (Ⅱ)若为钝角三角形,且,求

的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年北京市朝阳区高三上学期期末考试理科数学 题型:解答题

(本题满分13分)

在锐角中,分别为内角所对的边,且满足

(Ⅰ)求角的大小;

(Ⅱ)若,且,求的值.

 

查看答案和解析>>

科目:高中数学 来源:重庆市09-10学年高二下学期5月月考(数学文) 题型:解答题

(本题满分13分)展开式中,求:

(1)第6项;   (2) 第3项的系数;   (3)常数项。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年福建省龙岩市高三上学期期末考试数学理卷(一级学校) 题型:解答题

(本题满分13分)

如图,在五面体ABCDEF中,FA平面ABCDAD//BC//FEABADAFABBCFEAD.

(Ⅰ)求异面直线BFDE所成角的余弦值;

(Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为?若存在,试确定点M的位置;若不存在,请说明理由.

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案