精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥PABCD中,PAB为正三角形,四边形ABCD为炬形,平面PAB⊥平面ABCD.AB=2ADMN分别为PBPC中点.

(1)求证:MN//平面PAD;

(2)求二面角BAMC的大小;

3)在BC上是否存在点E,使得EN⊥平面AMV?若存在,求的值:若不存在,请说明理由.

【答案】(1)证明见解析(2)45°(3)存在,

【解析】

(1)欲证//平面,则证明MNAD即可.

(2)中点再建立空间直角坐标系,求得的法向量再求解即可.
(3)再根据平面,列出对应的向量,利用数量积为0,求出再计算即可.

证明:(1)∵M,N分别是PB,PC中点

MN是△ABC的中位线

MNBCAD

又∵AD平面PAD,MN平面PAD

所以MN∥平面PAD

解:(2)过点PPO垂直于AB,交AB于点O,

因为平面PAB⊥平面ABCD,所以PO⊥平面ABCD,

如图建立空间直角坐标系,

AB=2,则A(﹣1,0,0),C(1,1,0),

M(,0,),

B(1,0,0),N(),

设平面CAM法向量为,

,得,

x1=1,则,即

平面ABM法向量

所以,二面角BAMC的余弦值

因为二面角BAMC是锐二面角,

所以二面角BAMC等于45°

(3)存在点E,使得EN⊥平面AMN

E(1,λ,0),则,

可得,

所以在BC存在点E,使得EN⊥平面AMN,

此时

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数,关于的方程,给出下列结论

①存在这样的实数,使得方程有3个不同的实根

②不存在这样的实数,是的方程有4个不同的实根

③存在这样的实数,是的方程有5个不同的实根

④不存在这样的实数,是的方程有6个不同的实根

其中正确的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义区间的长度均为,其中

(1)若函数的定义域为值域为写出区间长度的最大值;

(2)若关于的不等式组的解集构成的各区间长度和为6,求实数的取值范围;

(3)已知求证:关于的不等式的解集构成的各区间的长度和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是数列的前项和,对任意,都有

1)若,求证:数列是等差数列,并求此时数列的通项公式;

2)若,求证:数列是等比数列,并求此时数列的通项公式;

3)设,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面内一动点到两个定点的距离之和为,线段的长为.

1)求动点的轨迹的方程;

2)过点作直线与轨迹交于两点,且点在线段的上方,线段的垂直平分线为.

①求的面积的最大值;

②轨迹上是否存在除外的两点关于直线对称,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x台机器人的总成本为万元.

1)若使每台机器人的平均成本最低,问应买多少台?

2)现按(1)中的数量购买机器人,需要安排m人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣(如图).经实验知,每台机器人的日平均分拣量为,(单位:件).已知传统的人工分拣每人每日的平均分拣量为1200件,问引进机器人后,日平均分拣量达最大时,用人数量比引进机器人前的用人数量最多可减少百分之几?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的个数是( )

①命题“若,则中至少有一个不小于2”的逆命题是真命题

②命题“设,若,则”是一个真命题

③“的否定是“

④已知都是实数,“”是“”的充分不必要条件

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某创业投资公司拟开发某种新能源产品,估计能获得万元到万元的投资利益,现准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加,且奖金不超过万元,同时奖金不超过收益的

)请分析函数是否符合公司要求的奖励函数模型,并说明原因.

)若该公司采用函数模型作为奖励函数模型,试确定最小正整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数的导数为,若对任意恒成立,则不等式的解集为(

A.B.C.D.

查看答案和解析>>

同步练习册答案