精英家教网 > 高中数学 > 题目详情
在矩形ABCD中,AB=2,BC=1,取AB中点E,CD中点F,若沿EF将矩形AEFD折起,使得平面AEF⊥平面EFB,则AE中点Q到平面BFD的距离为
2
2
2
2
分析:取BF中点O,连接EO,则可得AE中点Q到平面BFD的距离等于E到平面BFD的距离,即EO,由此可得结论.
解答:解:取BF中点O,连接EO,则EO⊥BF
∵平面AEF⊥平面EFB,平面AEF∩平面EFB=EF,DF⊥EF
∴DF⊥平面EFB
∵EO?平面EFB
∴DF⊥EO
∵DF∩BF=F
∴EO⊥平面BFD
∵AE∥DF,AE?平面BFD,DF?平面BFD
∴AE∥平面BFD
∴AE中点Q到平面BFD的距离等于E到平面BFD的距离,即EO
由题意,EFCB是正方形,∴EO=
2
2

即AE中点Q到平面BFD的距离等于
2
2

故答案为:
2
2
点评:本题考查点到面的结论,考查面面垂直,线面平行,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,AB=3
3
,BC=3,沿对角线BD将BCD折起,使点C移到点C′,且C′在平面ABD的射影O恰好在AB上
(1)求证:BC′⊥面ADC′;
(2)求二面角A-BC′-D的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在矩形ABCD中,已知AD=2,AB=a(a>2),E、F、G、H分别是边AD、AB、BC、CD上的点,若AE=AF=CG=CH,问AE取何值时,四边形EFGH的面积最大?并求最大的面积.

查看答案和解析>>

科目:高中数学 来源:设计必修二数学北师版 北师版 题型:044

如图,已知在矩形ABCD中,A(-4,4)、D(5,7),其对角线的交点E在第一象限内且与y轴的距离为一个单位,动点P(x,y)沿矩形一边BC运动,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1-5-5,在矩形ABCD中,过A作对角线BD的垂线AP与BD交于P,过P作BC、CD的垂线PE、PF,分别与BC、CD交于E、F.

1-5-5

求证:AP3=BD·PE·PF.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知在矩形ABCD中,||=.设=a, =b, =c,求|a+b+c|.

查看答案和解析>>

同步练习册答案