【题目】已知抛物线的焦点F,过F的直线与抛物线交于A,B两点,则的最小值是______.
【答案】18
【解析】
联立方程组消元,由根与系数的关系得出A,B横坐标=4,利用抛物线的性质得出|FA|+4|FB|4+10,根据基本不等式得出最值.
解:抛物线y2=8x的焦点F(2,0),
设A(x1,y1),B(x2,y2),则|FA|+4|FB|=x1+2+4(+2)=+4+10,
当直线AB斜率不存在时,|FA|+4|FB|=2+4×2+10=20,
当直AB斜率存在时,设直线AB的方程为y=k(x﹣2),
代入y2=8x得k2x2﹣(4k2+8)x+4k2=0,∴=4,∴|FA|+4|FB|4+10≥210=18,
当且仅当x1=1时取等号.
|FA|+4|FB|的最小值是18.
故答案为:18.
科目:高中数学 来源: 题型:
【题目】在正方体中,点E是棱的中点,点F是线段上的一个动点.有以下三个命题:
①异面直线与所成的角是定值;
②三棱锥的体积是定值;
③直线与平面所成的角是定值.
其中真命题的个数是( )
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有5名同学进行投篮比赛,决出第1名至第5名的不同名次,教练在公布成绩前透露,五名同学中的甲乙名次相邻,丙不是第一名,丁不是最后一名,根据教练的说法,这5名同学的名次排列最多有( )种不同的情况.
A.28B.32C.54D.64
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,梯形中,,过分别作,,垂足分别,,已知,将梯形沿同侧折起,得空间几何体 ,如图.
1若,证明:平面;
2若,,线段上存在一点,满足与平面所成角的正弦值为,求的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,点,是圆上任意一点,线段的垂直平分线交于点,当点在圆上运动时,点的轨迹为曲线.
1求曲线的方程;
2若直线 与曲线相交于两点,为坐标原点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系(),点为曲线上的动点,点在线段的延长线上,且满足,点的轨迹为。
(Ⅰ)求的极坐标方程;
(Ⅱ)设点的极坐标为,求面积的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学利用周末组织教职员工进行了一次秋季登山健身的活动,有Ⅳ人参加,现将所有参加者按年龄情况分为,,,,,,等七组,其频率分布直方图如图所示,已知这组的参加者是6人.
(1)已知和这两组各有2名数学教师,现从这两个组中各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人中恰有1名数学老师的概率;
(2)组织者从这组的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为,求的分布列和均值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com