我校某同学设计了一个如图所示的“蝴蝶形图案(阴影区域)”来庆祝数学学科节的成功举办.其中、是过抛物线焦点的两条弦,且其焦点,,点为轴上一点,记,其中为锐角.
(1)求抛物线方程;
(2)当“蝴蝶形图案”的面积最小时求的大小.
(1);(2).
解析试题分析:本题主要考查抛物线的定义和方程、向量的数量积、三角函数的最值等基础知识,同时考查解析几何的基本思想方法和运算求解能力.第一问,根据抛物线的标准方程,利用焦点坐标直接写出抛物线方程;第二问,设出,根据已知条件写出A点坐标,由于点A在抛物线上,所以将点A坐标代入到抛物线方程中,利用整理出的方程求出,同理求出,,,利用这4个边长求“蝴蝶形图案”的面积得出三角函数式,利用换元法求函数最值.
试题解析:(1)由抛物线焦点得,抛物线方程为.
(2)设,则点,
所以,,即.
解得,
同理:,,,
“蝴蝶形图案”的面积,
令,,∴,
则,∴时,即,“蝴蝶形图案”的面积为8.
考点:1.抛物线的标准方程;2.两点间距离公式;3.换元法求函数最值.
科目:高中数学 来源: 题型:解答题
P为圆A:上的动点,点.线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ.
(1)求曲线Γ的方程;
(2)当点P在第一象限,且时,求点M的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线C的方程为-=1(a>0,b>0),离心率e=,顶点到渐近线的距离为.
(1)求双曲线C的方程;
(2)如图,P是双曲线C上一点,A、B两点在双曲线C的两条渐近线上,且分别位于第一、二象限.若=λ,λ∈.求△AOB的面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆的圆心在坐标原点O,且恰好与直线相切.
(1)求圆的标准方程;
(2)设点A为圆上一动点,AN轴于N,若动点Q满足(其中m为非零常数),试求动点的轨迹方程.
(3)在(2)的结论下,当时,得到动点Q的轨迹曲线C,与垂直的直线与曲线C交于 B、D两点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
过椭圆的左顶点作斜率为2的直线,与椭圆的另一个交点为,与轴的交点为,已知.
(1)求椭圆的离心率;
(2)设动直线与椭圆有且只有一个公共点,且与直线相交于点,若轴上存在一定点,使得,求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,在直角坐标系xOy中,点P到抛物线C:y2=2px(p>0)的准线的距离为.点M(t,1)是C上的定点,A,B是C上的两动点,且线段AB被直线OM平分.
(1)求p,t的值;
(2)求△ABP面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
直线l与椭圆+=1(a>b>0)交于A(x1,y1),B(x2,y2)两点,已知m=(ax1,by1),n=(ax2,by2),若m⊥n且椭圆的离心离e=,又椭圆经过点(,1),O为坐标原点.
(1)求椭圆的方程.
(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆E:+=1(a>b>0)的离心率e=,a2与b2的等差中项为.
(1)求椭圆E的方程.
(2)A,B是椭圆E上的两点,线段AB的垂直平分线与x轴相交于点P(t,0),求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知顶点为原点的抛物线的焦点与椭圆的右焦点重合与在第一和第四象限的交点分别为.
(1)若△AOB是边长为的正三角形,求抛物线的方程;
(2)若,求椭圆的离心率;
(3)点为椭圆上的任一点,若直线、分别与轴交于点和,证明:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com