精英家教网 > 高中数学 > 题目详情
如图,圆锥顶点为P,底面圆心为O,其母线与底面所成的角为22.5°,AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°.

(1)证明:平面PAB与平面PCD的交线平行于底面;
(2)求cos∠COD.
(1)见解析   (2)17-12
(1)证明 设平面PAB与平面PCD的交线为l.

因为AB∥CD,AB不在平面PCD内,所以AB∥平面PCD.
又因为AB?平面PAB,平面PAB与平面PCD的交线为l,所以AB∥l.
由直线AB在底面上而l在底面外可知,l与底面平行.
(2)设CD的中点为F,连接OF,PF.
由圆的性质,知∠COD=2∠COF,OF⊥CD.
因为OP⊥底面,CD?底面,所以OP⊥CD.
又OP∩OF=O,故CD⊥平面OPF.
又CD?平面PCD,因此平面OPF⊥平面PCD,从而直线OP在平面PCD上的射影为直线PF,故∠OPF为OP与平面PCD所成的角.由题设,∠OPF=60°.
设OP=h,则OF=OP·tan∠OPF=h·tan 60°=h.
根据题设有∠OCP=22.5°,得
OC=.
由1=tan 45°=和tan 22.5°>0,
可解得tan 22.5°=-1,
因此OC==(+1)h.
在Rt△OCF中,cos∠COF=
故cos∠COD=cos(2∠COF)=2cos2∠COF-1=2()2-1=17-12.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥的底面为菱形,,且,分别是的中点.
(1)求证:∥平面
(2)过作一平面交棱于点,若二面角的大小为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知在侧棱垂直于底面三棱柱中,,点的中点.

(1)求证:
(2)求证: 
(3)求三棱锥的体积.

 

 
 
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正方体中,的中点.

(1)求证:平面
(2)求证:平面平面
(3)求直线BE与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,直线PA⊥平面ABC,且∠ABC=90°,又点Q,M,N分别是线段PB,AB,BC的中点,且点K是线段MN上的动点.
(Ⅰ)证明:直线QK平面PAC;
(Ⅱ)若PA=AB=BC=8,且二面角Q-AK-M的平面角的余弦值为
3
9
,试求MK的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知轴对称平面五边形ADCEF(如图1),BC为对称轴,AD⊥CD,AD=AB=1,CD=BC=
3
,将此图形沿BC折叠成直二面角,连接AF、DE得到几何体(如图2).
(1)证明:AF平面DEC;
(2)求二面角E-AD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图PA⊥⊙O所在平面,AB是⊙O的直径,C是⊙O上一点,AE⊥PC,AF⊥PB,给出下列结论:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中真命题的序号是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图中四个正方体图形,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是(  )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)(2011•重庆)如图,在四面体ABCD中,平面ABC⊥ACD,AB⊥BC,AD=CD,∠CAD=30°

(Ⅰ)若AD=2,AB=2BC,求四面体ABCD的体积.
(Ⅱ)若二面角C﹣AB﹣D为60°,求异面直线AD与BC所成角的余弦值.

查看答案和解析>>

同步练习册答案