精英家教网 > 高中数学 > 题目详情
如图,在底面为平行四边形的四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,AD=1,CD=2,∠DCB=60°.
(Ⅰ)求证:平面A1BCD1⊥平面BDD1B1
(Ⅱ)若D1D=BD,求四棱锥D-A1BCD1的体积.
证明:(Ⅰ)因为底面ABCD,AD=1,CD=2,∠DCB=60°.
所以BC=1,∠DBC=90°,可得AD⊥BD,
因为几何体是四棱柱ABCD-A1B1C1D1,所以A1D1⊥B1D1
又D1D⊥底面ABCD,所以AD⊥D1D,可得A1B1⊥D1D,
又B1D1∩D1D=D1
所以A1D1⊥平面BDD1B1,A1D1?平面A1BCD1
∴平面A1BCD1⊥平面BDD1B1
(Ⅱ)由(Ⅰ)中A1D1⊥平面BDD1B1,四棱锥D-A1BCD1的体积转化为三棱锥A1-DD1B与C-DD1B的体积的和,而且两个体积相等,
∵AD=1,CD=2,∠DCB=60°.所以BD=
3
,D1D=BD=
3

VA1-DD1C=
1
3
S△DD1C•AD
=
1
3
×
1
2
×
3
×
3
×1
=
1
2

所以是棱锥的体积为2×
1
2
=1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,AO⊥平面α,点O为垂足,BC?平面α,BC⊥OB,若∠ABO=
π
4
∠COB=
π
6
,则cos∠BAC=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,菱形ABCD的边长为4,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,得到三棱锥B-ACD,点M是棱BC的中点,DM=2
2

(1)求证:OM平面ABD;
(2)求证:平面DOM⊥平面ABC;
(3)求三棱锥B-DOM的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在圆锥PO中,已知PO=
2
,⊙O的直径AB=2,C是
AB
的中点,D为AC的中点.
(Ⅰ)证明:平面POD⊥平面PAC;
(Ⅱ)求二面角B-PA-C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求证:平面PBD⊥平面PAC.
(Ⅱ)求四棱锥P-ABCD的体积V.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若点P(-4,-2,3)关于坐标平面xoy及y轴的对称点的坐标分别是(a,b,c)、(e,f,d),则c与e的和为(  )
A.7B.-7C.-1D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

点A(2,1,-1)关于x轴对称的点的坐标为(  )
A.(-2,1,-1)B.(2,1,1)C.(2,-1,-1)D.(2,-1,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点,动点,且满足
成等差数列.
(1)求点的轨迹的方程;
(2)若曲线的方程为,过点的直线与曲线相切,
求直线被曲线截得的线段长的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点O(0,0),A(2,0),B(-4,0),点C在直线l:y=-x上.若CO是∠ACB的平分线,则点C的坐标为     

查看答案和解析>>

同步练习册答案