【题目】已知函数,.
(1)若,求证:函数恰有一个负零点;(用图象法证明不给分)
(2)若函数恰有三个零点,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】2017年10月18日至10月24日,中国共产党第十九次全国代表大会简称党的“十九大”在北京召开一段时间后,某单位就“十九大”精神的领会程度随机抽取100名员工进行问卷调查,调查问卷共有20个问题,每个问题5分,调查结束后,发现这100名员工的成绩都在内,按成绩分成5组:第1组,第2组,第3组,第4组,第5组,绘制成如图所示的频率分布直方图,已知甲、乙、丙分别在第3,4,5组,现在用分层抽样的方法在第3,4,5组共选取6人对“十九大”精神作深入学习.
求这100人的平均得分同一组数据用该区间的中点值作代表;
求第3,4,5组分别选取的作深入学习的人数;
若甲、乙、丙都被选取对“十九大”精神作深入学习,之后要从这6人随机选取2人再全面考查他们对“十九大”精神的领会程度,求甲、乙、丙这3人至多有一人被选取的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(,)的图象的相邻两条对称轴之间的距离为4,且有一个零点为.
(1)求函数的解析式;
(2)若,且,求的值;
(3)若在上恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某手机生产企业为了解消费者对某款手机的认同情况,通过销售部随机抽取50名购买该款手机的消费者,并发出问卷调查(满分50分),该问卷只有20份给予回复,这20份的评分如下:
男 | 47,36,28,48,48,44,50,46,50,37,35,49 |
女 | 38,37,50,36,38,45,29,39 |
(1)完成下面的茎叶图,并求12名男消费者评分的中位数与8名女消费者评分的众数及平均值;
男 | 女 | |
2 | ||
3 | ||
4 | ||
5 |
满意 | 不满意 | 合计 | |
男 | |||
女 | |||
合计 |
(2)若大于40分为“满意”,否则为“不满意”,完成上面的列联表,并判断是否有95%的把握认为消费者对该款手机的“满意度”与性别有关;
(3)若从回复的20名消费者中按性别用分层抽样的方法抽取5人,再从这5人中随机抽取2人作进一步调查,求至少有1名女性消费者被抽到的概率.
附:
0.05 | 0.025 | 0.01 | |
3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下关于线性方程组解的个数的命题.
①,②,③,④,
(1)方程组①可能有无穷多组解;
(2)方程组②可能有且只有两组不同的解;
(3)方程组③可能有且只有唯一一组解;
(4)方程组④可能有且只有唯一一组解.
其中真命题的序号为________________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司的新能源产品上市后在国内外同时销售,已知第一批产品上市销售40天内全部售完,该公司对这批产品上市后的国内外市场销售情况进行了跟踪调查,如图所示,其中图①中的折线表示的是国外市场的日销售量与上市时间的关系;图②中的抛物线表示的是国内市场的日销售量与上市时间的关系;下表表示的是产品广告费用、产品成本、产品销售价格与上市时间的关系.
图① 图②
第t天产品广告费用(单位:万元) | 每件产品成本(单位:万元) | 每件产品销售价格(单位:万元) | |
3 | 6 | ||
10 | 3 | 5 |
(1)分别写出国外市场的日销售量、国内市场的日销售量与产品上市时间t的函数关系式;
(2)产品上市后的哪几天,这家公司的日销售利润超过260万元?
(日销售利润=(单件产品销售价-单件产品成本)×日销售量-当天广告费用,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在数列中,已知,对于任意的,有.
(1)求数列的通项公式.
(2)若数列满足,求数列的通项公式.
(3)设,是否存在实数,当时,恒成立?若存在,求实数的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,部分对应值如下表.
x | 0 | 4 | 5 | |
1 | 2 | 2 | 1 |
的导函数的图象如图所示:下列关于的命题:
函数是周期函数;
函数在是减函数;
如果当时,的最大值是2,那么t的最大值为4;
函数的零点个数可能为0、1、2、3、4个.
其中正确命题的序号是______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:由椭圆的两个焦点和短轴的一个顶点组成的三角形称为该椭圆的“特征三角形”.如果两个椭圆的“特征三角形”是相似的,则称这两个椭圆是“相似椭圆”,并将三角形的相似比称为椭圆的相似比.已知椭圆.
(1)若椭圆,判断与是否相似?如果相似,求出与的相似比;如果不相似,请说明理由;
(2)写出与椭圆相似且焦点在轴上、短半轴长为的椭圆的标准方程;若在椭圆上存在两点、关于直线对称,求实数的取值范围;
(3)如图:直线与两个“相似椭圆”和分别交于点和点,试在椭圆和椭圆上分别作出点和点(非椭圆顶点),使和组成以为相似比的两个相似三角形,写出具体作法.(不必证明)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com