精英家教网 > 高中数学 > 题目详情
(2013•顺义区二模)如图,四棱锥P-ABCD中,AB⊥平面PAD.AB∥CD,PD=AD,F是DC上的点且DF=
12
AB,PH
为△PAD中AD边上的高.
(Ⅰ)求证:AB∥平面PDC;
(Ⅱ)求证:PH⊥BC;
(Ⅲ)线段PB上是否存在点E,使EF⊥平面PAB?说明理由.
分析:(Ⅰ)由已知AB∥CD,利用线面平行的判定定理即可证明;
(Ⅱ)利用AB⊥平面PAD,得到平面PAD⊥平面ABCD.再利用面面垂直的性质定理即可证明;
(Ⅲ)线段PB上存在点E,使EF⊥平面PAB.分别取PA、PB的中点G、E,利用三角形的中位线定理和平行四边形的判定定理和性质定理即可得到EF∥DG,l利用线面垂直的判定定理和性质定理即可证明GD⊥平面PAB.从而得到EF⊥平面PAB.
解答:(Ⅰ)证明:∵AB∥CD,且AB?平面PCD,CD?平面PCD,
∴AB∥平面PDC.
(Ⅱ)证明:∵AB⊥平面PAD,AB?平面ABCD,
∴平面PAD⊥平面ABCD.
∵PH⊥AD,
∴PH⊥平面ABCD,
∴PH⊥BC.
(Ⅲ)解:线段PB上存在点E,使EF⊥平面PAB.
证明如下:
如图,分别取PA、PB的中点G、E,
GE
.
1
2
AB

DF
.
1
2
AB

GE
.
DF

∴EFGD为平行四边形,故EF∥GD,
∵AB⊥平面PAD,∴AB⊥GD.
∵G为PA的中点,且PD=AD.
∴GD⊥PA.
∵PA∩AB=A,∴GD⊥平面PAB.
∴EF⊥平面PAB.
点评:熟练掌握线面平行的判定定理、面面垂直的性质定理、三角形的中位线定理和平行四边形的判定定理和性质定理、线面垂直的判定定理和性质定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知函数f(x)=
ex
1+ax2
,其中a为正实数,x=
1
2
是f(x)的一个极值点.
(Ⅰ)求a的值;
(Ⅱ)当b>
1
2
时,求函数f(x)在[b,+∞)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)设函数f(x)=
log2x,x≥2
2-x,x<2
,则满足f(x)≤2的x的取值范围是
[0,4]
[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)已知集合A={x∈R|-3<x<2},B={x∈R|x2-4x+3≥0},则A∩B=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•顺义区二模)复数
3-2i
1+i
=(  )

查看答案和解析>>

同步练习册答案